These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37854640)

  • 1. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-Reinforcement-Learning-Based IoT Sensor Data Cleaning Framework for Enhanced Data Analytics.
    Mohammed AFY; Sultan SM; Lee J; Lim S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans.
    Sharma S; Singh G; Sharma M
    Comput Biol Med; 2021 Jul; 134():104450. PubMed ID: 33989896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Task Dispatching and Scheduling Using a Deep Q-Network in a Cluster Edge Computing System.
    Youn J; Han YH
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Computational Intelligence Techniques-Based Multi-Intersection Querying Theory for Efficient QoS in the Next Generation Internet of Things.
    Kumar A; K K; Dahiya M; Kushwah VS; Siddiqa A; Kaur K; Rahin SA
    Comput Intell Neurosci; 2023; 2023():1388425. PubMed ID: 37455765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study of Two-Way Short- and Long-Term Memory Network Intelligent Computing IoT Model-Assisted Home Education Attention Mechanism.
    Ma S
    Comput Intell Neurosci; 2021; 2021():3587884. PubMed ID: 34970310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks.
    Li D; Xu S; Li P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-Driven Deep Learning for Edge Intelligence (EDL-EI).
    Shah SK; Tariq Z; Lee J; Lee Y
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks.
    Peña JM; Lozano JA; Larrañaga P
    Evol Comput; 2005; 13(1):43-66. PubMed ID: 15901426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform.
    Elbagoury BM; Vladareanu L; Vlădăreanu V; Salem AB; Travediu AM; Roushdy MI
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Table-Balancing Cooperative Robot Based on Deep Reinforcement Learning.
    Kim Y; Kim DW; Kang BY
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory.
    Liu J; Lin CR; Hu YC; Donta PK
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Q-Network-Based Algorithm for Multi-Connectivity Optimization in Heterogeneous Cellular-Networks.
    Hernández-Carlón JJ; Pérez-Romero J; Sallent O; Vilà I; Casadevall F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an Artificial Intelligence System Recognition Based on the Deep Neural Network Algorithm.
    Zhang Y; Zhang Q; Yang J
    Comput Intell Neurosci; 2022; 2022():4623188. PubMed ID: 35875769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an Optimized Distributed Message Queue System for AIoT Edge Computing: A Reinforcement Learning Approach.
    Xie Z; Ji C; Xu L; Xia M; Cao H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MonkeyKing: Adaptive Parameter Tuning on Big Data Platforms with Deep Reinforcement Learning.
    Du H; Han P; Xiang Q; Huang S
    Big Data; 2020 Aug; 8(4):270-290. PubMed ID: 32654536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensors and Artificial Intelligence Methods and Algorithms for Human-Computer Intelligent Interaction: A Systematic Mapping Study.
    Šumak B; Brdnik S; Pušnik M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for Detecting Weapons in Video Surveillance Systems.
    Fathy C; Saleh SN
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.