These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37854641)

  • 1. Mutual-Attention Net: A Deep Attentional Neural Network for Keyphrase Generation.
    Duan W; Rao H; Duan L; Wang N
    Comput Intell Neurosci; 2023; 2023():8685488. PubMed ID: 37854641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Keyphrase Generation From Copy and Generating Spaces.
    Yao Y; Yang P; Zhao G; Ge Y; Yang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; PP():. PubMed ID: 37432815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty-based Self-training for Biomedical Keyphrase Extraction.
    Gero Z; Ho JC
    IEEE EMBS Int Conf Biomed Health Inform; 2021 Jul; 2021():. PubMed ID: 35775029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Word centrality constrained representation for keyphrase extraction.
    Gero Z; Ho JC
    Proc Conf; 2021 Jun; 2021():155-161. PubMed ID: 35748887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating keyphrase extraction algorithms for finding similar news articles using lexical similarity calculation and semantic relatedness measurement by word embedding.
    Sarwar TB; Noor NM; Saef Ullah Miah M
    PeerJ Comput Sci; 2022; 8():e1024. PubMed ID: 35875631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representing Documents via Latent Keyphrase Inference.
    Liu J; Ren X; Shang J; Cassidy T; Voss CR; Han J
    Proc Int World Wide Web Conf; 2016 Apr; 2016():1057-1067. PubMed ID: 28229132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep neural model with self-training for scientific keyphrase extraction.
    Zhu X; Lyu C; Ji D; Liao H; Li F
    PLoS One; 2020; 15(5):e0232547. PubMed ID: 32413094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel denoising method for CT images based on U-net and multi-attention.
    Zhang J; Niu Y; Shangguan Z; Gong W; Cheng Y
    Comput Biol Med; 2023 Jan; 152():106387. PubMed ID: 36495750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge feature extraction-based dual CNN for LDCT denoising.
    Li Z; Liu Y; Li K; Chen Y; Shu H; Kang J; Lu J; Gui Z
    J Opt Soc Am A Opt Image Sci Vis; 2022 Oct; 39(10):1929-1938. PubMed ID: 36215566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HD
    Cui R; Yang R; Liu F; Geng H
    Comput Biol Med; 2023 Jan; 152():106384. PubMed ID: 36493731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. μ-Net: Medical image segmentation using efficient and effective deep supervision.
    Yuan D; Xu Z; Tian B; Wang H; Zhan Y; Lukasiewicz T
    Comput Biol Med; 2023 Jun; 160():106963. PubMed ID: 37150087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical-guided attention enhances unsupervised PET image denoising performance.
    Onishi Y; Hashimoto F; Ote K; Ohba H; Ota R; Yoshikawa E; Ouchi Y
    Med Image Anal; 2021 Dec; 74():102226. PubMed ID: 34563861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical-protein interaction extraction via contextualized word representations and multihead attention.
    Zhang Y; Lin H; Yang Z; Wang J; Sun Y
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31125403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising.
    Zhang H; Zhao M; Wei C; Mantini D; Li Z; Liu Q
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34596046
    [No Abstract]   [Full Text] [Related]  

  • 18. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supervised Denoising Image Filter Based on Recursive Deep Neural Network Structure.
    Kang C; Kang SU
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.