BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37855233)

  • 1. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart.
    Heuzé J; Kemiha S; Barthe A; Vilarrubias AT; Aouadi E; Aiello U; Libri D; Lin YL; Lengronne A; Poli J; Pasero P
    EMBO J; 2023 Dec; 42(23):e113104. PubMed ID: 37855233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair.
    Arudchandran A; Cerritelli S; Narimatsu S; Itaya M; Shin DY; Shimada Y; Crouch RJ
    Genes Cells; 2000 Oct; 5(10):789-802. PubMed ID: 11029655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair.
    Zhao H; Zhu M; Limbo O; Russell P
    EMBO Rep; 2018 May; 19(5):. PubMed ID: 29622660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation.
    Audoynaud C; Schirmeisen K; Ait Saada A; Gesnik A; Fernández-Varela P; Boucherit V; Ropars V; Chaudhuri A; Fréon K; Charbonnier JB; Lambert SAE
    Mol Cell; 2023 Apr; 83(7):1061-1074.e6. PubMed ID: 36868227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.
    Parajuli S; Teasley DC; Murali B; Jackson J; Vindigni A; Stewart SA
    J Biol Chem; 2017 Sep; 292(37):15216-15224. PubMed ID: 28717002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNase H1, the Gold Standard for R-Loop Detection.
    Cerritelli SM; Sakhuja K; Crouch RJ
    Methods Mol Biol; 2022; 2528():91-114. PubMed ID: 35704187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential roles of the RNases H in preventing chromosome instability.
    Zimmer AD; Koshland D
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12220-12225. PubMed ID: 27791008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNase H activities counteract a toxic effect of Polymerase η in cells replicating with depleted dNTP pools.
    Meroni A; Nava GM; Bianco E; Grasso L; Galati E; Bosio MC; Delmastro D; Muzi-Falconi M; Lazzaro F
    Nucleic Acids Res; 2019 May; 47(9):4612-4623. PubMed ID: 30847483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.
    Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T
    Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.
    Maduike NZ; Tehranchi AK; Wang JD; Kreuzer KN
    Mol Microbiol; 2014 Jan; 91(1):39-56. PubMed ID: 24164596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions.
    Zardoni L; Nardini E; Brambati A; Lucca C; Choudhary R; Loperfido F; Sabbioneda S; Liberi G
    Nucleic Acids Res; 2021 Dec; 49(22):12769-12784. PubMed ID: 34878142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNase H2 roles in genome integrity revealed by unlinking its activities.
    Chon H; Sparks JL; Rychlik M; Nowotny M; Burgers PM; Crouch RJ; Cerritelli SM
    Nucleic Acids Res; 2013 Mar; 41(5):3130-43. PubMed ID: 23355612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNase H1 promotes replication fork progression through oppositely transcribed regions of
    González de Cózar JM; Gerards M; Teeri E; George J; Dufour E; Jacobs HT; Jõers P
    J Biol Chem; 2019 Mar; 294(12):4331-4344. PubMed ID: 30635398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal.
    Wolak C; Ma HJ; Soubry N; Sandler SJ; Reyes-Lamothe R; Keck JL
    Mol Microbiol; 2020 Sep; 114(3):495-509. PubMed ID: 32426857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1.
    Nguyen HD; Yadav T; Giri S; Saez B; Graubert TA; Zou L
    Mol Cell; 2017 Mar; 65(5):832-847.e4. PubMed ID: 28257700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DICER ribonuclease removes harmful R-loops.
    Camino LP; Dutta A; Barroso S; Pérez-Calero C; Katz JN; García-Rubio M; Sung P; Gómez-González B; Aguilera A
    Mol Cell; 2023 Oct; 83(20):3707-3719.e5. PubMed ID: 37827159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae.
    Szyjka SJ; Aparicio JG; Viggiani CJ; Knott S; Xu W; Tavaré S; Aparicio OM
    Genes Dev; 2008 Jul; 22(14):1906-20. PubMed ID: 18628397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks.
    Shimada K; Oma Y; Schleker T; Kugou K; Ohta K; Harata M; Gasser SM
    Curr Biol; 2008 Apr; 18(8):566-75. PubMed ID: 18406137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents.
    Liu JS; Kuo SR; Melendy T
    Mutat Res; 2003 Nov; 532(1-2):215-26. PubMed ID: 14643438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids.
    Lockhart A; Pires VB; Bento F; Kellner V; Luke-Glaser S; Yakoub G; Ulrich HD; Luke B
    Cell Rep; 2019 Nov; 29(9):2890-2900.e5. PubMed ID: 31775053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.