These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 37855421)

  • 1. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
    Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y
    J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics-based analysis of dynamic contrast-enhanced magnetic resonance image: A prediction nomogram for lymphovascular invasion in breast cancer.
    Yang X; Wang X; Zuo Z; Zeng W; Liu H; Zhou L; Wen Y; Long C; Tan S; Li X; Zeng Y
    Magn Reson Imaging; 2024 Oct; 112():89-99. PubMed ID: 38971267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer.
    Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H
    Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer.
    Zheng H; Jian L; Li L; Liu W; Chen W
    Acad Radiol; 2024 May; 31(5):1762-1772. PubMed ID: 38092588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and Peritumoral Based Radiomics for Assessment of Lymphovascular Invasion in Invasive Breast Cancer.
    Jiang W; Meng R; Cheng Y; Wang H; Han T; Qu N; Yu T; Hou Y; Xu S
    J Magn Reson Imaging; 2024 Feb; 59(2):613-625. PubMed ID: 37199241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer.
    Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X
    J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions.
    Liu W; Li L; Deng J; Li W
    Comput Med Imaging Graph; 2024 Sep; 116():102415. PubMed ID: 39032451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer.
    Tong P; Sun D; Chen G; Ni J; Li Y
    BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prior Clinico-Radiological Features Informed Multi-Modal MR Images Convolution Neural Network: A novel deep learning framework for prediction of lymphovascular invasion in breast cancer.
    Zheng H; Jian L; Li L; Liu W; Chen W
    Cancer Med; 2024 Feb; 13(3):e6932. PubMed ID: 38230837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer.
    Ma Q; Lu X; Chen Q; Gong H; Lei J
    Acad Radiol; 2024 Aug; ():. PubMed ID: 39107190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging multimodal MRI-based radiomics analysis with diverse machine learning models to evaluate lymphovascular invasion in clinically node-negative breast cancer.
    Jiang Y; Zeng Y; Zuo Z; Yang X; Liu H; Zhou Y; Fan X
    Heliyon; 2024 Jan; 10(1):e23916. PubMed ID: 38192872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics.
    Xu Z; Xie Y; Wu L; Chen M; Shi Z; Cui Y; Han C; Lin H; Liu Y; Li P; Chen X; Ding Y; Liu Z
    J Magn Reson Imaging; 2023 Nov; 58(5):1580-1589. PubMed ID: 36797654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Lymphovascular invasion status in breast cancer based on magnetic resonance imaging radiomics features.
    Li X; Luo K; Zhang N; Chen W; Li B; Lu Z; Chen Y; Wu K
    Magn Reson Imaging; 2024 Jun; 109():91-95. PubMed ID: 38467265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI.
    Liu C; Ding J; Spuhler K; Gao Y; Serrano Sosa M; Moriarty M; Hussain S; He X; Liang C; Huang C
    J Magn Reson Imaging; 2019 Jan; 49(1):131-140. PubMed ID: 30171822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI radiomics for the preoperative evaluation of lymphovascular invasion in breast cancer: A meta-analysis.
    Ma Q; Li Z; Li W; Chen Q; Liu X; Feng W; Lei J
    Eur J Radiol; 2023 Nov; 168():111127. PubMed ID: 37801997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model].
    Zhang Y; Huang H; Yin L; Wang ZX; Lu SY; Wang XX; Xiang LL; Zhang Q; Zhang JL; Shan XH
    Zhonghua Zhong Liu Za Zhi; 2024 May; 46(5):428-437. PubMed ID: 38742356
    [No Abstract]   [Full Text] [Related]  

  • 18. Editorial for "Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI".
    Morrell GR
    J Magn Reson Imaging; 2024 Jun; 59(6):2250-2251. PubMed ID: 37855435
    [No Abstract]   [Full Text] [Related]  

  • 19. Intratumoral and Peritumoral Radiomics Based on Preoperative MRI for Evaluation of Programmed Cell Death Ligand-1 Expression in Breast Cancer.
    Wu Z; Lin Q; Wang H; Chen J; Wang G; Fu G; Li L; Bian T
    J Magn Reson Imaging; 2024 Aug; 60(2):588-599. PubMed ID: 37916918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoperative Dynamic Contrast-Enhanced and Diffusion-Weighted Breast Magnetic Resonance Imaging Findings for Prediction of Lymphovascular Invasion of the Lesions in Node-Negative Invasive Breast Cancer.
    Coşkun Bilge A; Yaltırık Bilgin E; Bulut ZM; Esen Bostancı I; Bilgin E
    Can Assoc Radiol J; 2024 May; 75(2):386-396. PubMed ID: 38095635
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.