These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37855485)

  • 41. Plasmonic Metasurface Absorber Based on Electro-Optic Substrate for Energy Harvesting.
    Muhammad N; Fu T; Liu Q; Tang X; Deng ZL; Ouyang Z
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30453662
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface.
    Kazanskiy NL; Butt MA; Khonina SN
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-Wideband High-Efficiency Solar Absorber and Thermal Emitter Based on Semiconductor InAs Microstructures.
    Zhu Y; Cai P; Zhang W; Meng T; Tang Y; Yi Z; Wei K; Li G; Tang B; Yi Y
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Truncated titanium/semiconductor cones for wide-band solar absorbers.
    Liu Z; Tang P; Liu X; Yi Z; Liu G; Wang Y; Liu M
    Nanotechnology; 2019 Jul; 30(30):305203. PubMed ID: 30884474
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoparticle-on-Mirror Metamaterials for Full-Spectrum Selective Solar Energy Harvesting.
    Li Y; Lin C; Li K; Chi C; Huang B
    Nano Lett; 2022 Jul; 22(14):5659-5666. PubMed ID: 35709431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perfect metamaterial absorber with high fractional bandwidth for solar energy harvesting.
    Hossain MJ; Faruque MRI; Islam MT
    PLoS One; 2018; 13(11):e0207314. PubMed ID: 30419057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Broadband and Efficient Metamaterial Absorber Design Based on Gold-MgF2-Tungsten Hybrid Structure for Solar Thermal Application.
    Armghan A; Alsharari M; Aliqab K
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241689
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Independently Tunable Multipurpose Absorber with Single Layer of Metal-Graphene Metamaterials.
    Han C; Zhong R; Liang Z; Yang L; Fang Z; Wang Y; Ma A; Wu Z; Hu M; Liu D; Liu S
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33429875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array.
    Yi Z; Li J; Lin J; Qin F; Chen X; Yao W; Liu Z; Cheng S; Wu P; Li H
    Nanoscale; 2020 Nov; 12(45):23077-23083. PubMed ID: 33179661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-Threshold and High-Extinction-Ratio Optical Bistability within a Graphene-Based Perfect Absorber.
    Zhang Z; Sun Q; Fan Y; Zhu Z; Zhang J; Yuan X; Guo C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multifunctional switching bidirectional optical absorber based on a titanium nitride metamaterial.
    Su L; Feng H; Sun P; Zhou Y; Li X; Nie S; Ran L; Gao Y
    Phys Chem Chem Phys; 2024 Jan; 26(3):2463-2471. PubMed ID: 38167684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber.
    Luo X; Zhai X; Wang L; Lin Q
    Opt Express; 2018 Apr; 26(9):11658-11666. PubMed ID: 29716084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-resonant refractory prismoid for full-spectrum solar energy perfect absorbers.
    Liu Z; Zhong H; Liu G; Liu X; Wang Y; Wang J
    Opt Express; 2020 Oct; 28(21):31763-31774. PubMed ID: 33115142
    [TBL] [Abstract][Full Text] [Related]  

  • 56. VO
    He J; Zhang M; Shu S; Yan Y; Wang M
    Opt Express; 2020 Dec; 28(25):37590-37599. PubMed ID: 33379591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.
    Musa A; Alam T; Islam MT; Hakim ML; Rmili H; Alshammari AS; Islam MS; Soliman MS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36838994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO
    He H; Shang X; Xu L; Zhao J; Cai W; Wang J; Zhao C; Wang L
    Opt Express; 2020 Feb; 28(4):4563-4570. PubMed ID: 32121690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wafer-scale metamaterials for polarization-insensitive and dual-band perfect absorption.
    Liu J; Zhu M; Zhang N; Zhang H; Zhou Y; Sun S; Yi N; Gao S; Song Q; Xiao S
    Nanoscale; 2015 Dec; 7(45):18914-7. PubMed ID: 26525777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of Dual-Band Terahertz Perfect Metamaterial Absorber Based on Circuit Theory.
    Liu Z; Guo L; Zhang Q
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.