These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37855602)

  • 1.
    Angrish N; Lalwani N; Khare G
    Microbiol Spectr; 2023 Dec; 11(6):e0135923. PubMed ID: 37855602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis.
    Paiva AM; Vanderwall DE; Blanchard JS; Kozarich JW; Williamson JM; Kelly TM
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):67-77. PubMed ID: 11342032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of the dapB gene, encoding dihydrodipicolinate reductase, from Mycobacterium tuberculosis.
    Pavelka MS; Weisbrod TR; Jacobs WR
    J Bacteriol; 1997 Apr; 179(8):2777-82. PubMed ID: 9098082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Sinorhizobium meliloti genes encoding a functional dihydrodipicolinate synthase (dapA) and dihydrodipicolinate reductase (dapB).
    García-Rodríguez FM; Zekri S; Toro N
    Arch Microbiol; 2000; 173(5-6):438-44. PubMed ID: 10896225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative structural and mechanistic studies of 4-hydroxy-tetrahydrodipicolinate reductases from Mycobacterium tuberculosis and Vibrio vulnificus.
    Pote S; Kachhap S; Mank NJ; Daneshian L; Klapper V; Pye S; Arnette AK; Shimizu LS; Borowski T; Chruszcz M
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129750. PubMed ID: 32980502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.
    Liu L; Shaw PD
    J Bacteriol; 1997 Jan; 179(2):507-13. PubMed ID: 8990304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of dihydrodipicolinate reductase (DapB) from Mycobacterium tuberculosis in three crystal forms.
    Janowski R; Kefala G; Weiss MS
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):61-72. PubMed ID: 20057050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of inhibitors against Mycobacterium tuberculosis thiamin phosphate synthase, an important target for the development of anti-TB drugs.
    Khare G; Kar R; Tyagi AK
    PLoS One; 2011; 6(7):e22441. PubMed ID: 21818324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis.
    Alsayed SSR; Lun S; Payne A; Bishai WR; Gunosewoyo H
    Bioorg Chem; 2021 Jan; 106():104486. PubMed ID: 33276981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimycobacterial activity of acetone extract and isolated metabolites from folklore medicinal lichen Usnea laevis Nyl. against drug-sensitive and multidrug-resistant tuberculosis strains.
    Tatipamula VB; Annam SSP
    J Ethnopharmacol; 2022 Jan; 282():114641. PubMed ID: 34536516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural modification of a novel inhibitor for mycobacterium enoyl-acyl carrier protein reductase assisted by
    Taira J; Nagano T; Kitamura M; Yamaguchi M; Sakamoto H; Aoki S
    Int J Mycobacteriol; 2020; 9(1):12-17. PubMed ID: 32474482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence and expression of the Escherichia coli dapB gene.
    Bouvier J; Richaud C; Richaud F; Patte JC; Stragier P
    J Biol Chem; 1984 Dec; 259(23):14829-34. PubMed ID: 6094578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach.
    Madugula SS; Nagamani S; Jamir E; Priyadarsinee L; Sastry GN
    Mol Divers; 2022 Jun; 26(3):1675-1695. PubMed ID: 34468898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis.
    Sagong HY; Kim KJ
    J Microbiol Biotechnol; 2016 Feb; 26(2):226-32. PubMed ID: 26502738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.