BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37855666)

  • 1. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of vocal tract constrictions on aerodynamic measures in a synthetic vocal fold model.
    May NA; Scherer RC
    J Acoust Soc Am; 2023 Nov; 154(5):3310-3320. PubMed ID: 37983543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic interactions of the voice source with the lower vocal tract.
    Titze IR; Story BH
    J Acoust Soc Am; 1997 Apr; 101(4):2234-43. PubMed ID: 9104025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual consequences of changes in epilaryngeal area and shape.
    Samlan RA; Kreiman J
    J Acoust Soc Am; 2014 Nov; 136(5):2798-806. PubMed ID: 25373979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings.
    Titze IR
    J Speech Lang Hear Res; 2006 Apr; 49(2):448-59. PubMed ID: 16671856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR; Afjeh AA; Scherer RC
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
    Laukkanen AM; Titze IR; Hoffman H; Finnegan E
    Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source and filter adjustments affecting the perception of the vocal qualities twang and yawn.
    Titze IR; Bergan CC; Hunter EJ; Story B
    Logoped Phoniatr Vocol; 2003; 28(4):147-55. PubMed ID: 14686543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.
    Maxfield L; Palaparthi A; Titze I
    J Voice; 2017 Mar; 31(2):149-156. PubMed ID: 27501922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.