These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37855666)

  • 21. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of Multiple Source Vocalization in the Larynx: How True Folds, False Folds, and Aryepiglottic Folds May Interact.
    Titze IR
    J Speech Lang Hear Res; 2024 Mar; 67(3):802-810. PubMed ID: 38416067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal tract adjustments to minimize vocal fold contact pressure during phonation.
    Zhang Z
    J Acoust Soc Am; 2021 Sep; 150(3):1609. PubMed ID: 34598628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immediate effects of straw phonation in air or water on the laryngeal function and configuration of female speech-language pathology students visualised with strobovideolaryngoscopy: A randomised controlled trial.
    Meerschman I; D'haeseleer E; Kissel I; De Vriese C; Tomassen P; Dochy F; Pieters K; Claeys S; Sataloff R; Van Lierde K
    Int J Lang Commun Disord; 2023 May; 58(3):944-958. PubMed ID: 36722126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificially lengthened and constricted vocal tract in vocal training methods.
    Bele IV
    Logoped Phoniatr Vocol; 2005; 30(1):34-40. PubMed ID: 16040438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic roles of the laryngeal cavity in vocal tract resonance.
    Takemoto H; Adachi S; Kitamura T; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2228-38. PubMed ID: 17069318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glissando: laryngeal motorics and acoustics.
    Hoppe U; Rosanowski F; Döllinger M; Lohscheller J; Schuster M; Eysholdt U
    J Voice; 2003 Sep; 17(3):370-6. PubMed ID: 14513959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study on nonlinear source-filter interaction using synthetic vocal fold models.
    Migimatsu K; Tokuda IT
    J Acoust Soc Am; 2019 Aug; 146(2):983. PubMed ID: 31472538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.