These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37856107)

  • 21. Estimation of Visual Function Using Deep Learning From Ultra-Widefield Fundus Images of Eyes With Retinitis Pigmentosa.
    Nagasato D; Sogawa T; Tanabe M; Tabuchi H; Numa S; Oishi A; Ohashi Ikeda H; Tsujikawa A; Maeda T; Takahashi M; Ito N; Miura G; Shinohara T; Egawa M; Mitamura Y
    JAMA Ophthalmol; 2023 Apr; 141(4):305-313. PubMed ID: 36821134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The consistency of ultra-wide-field retinal imaging and the Superfield lens for fundus screening in HIV/AIDS patients].
    Du KF; Chen C; Xie LY; Guo CG; Dong HW; Kong WJ; Wei WB
    Zhonghua Yan Ke Za Zhi; 2019 Oct; 55(10):763-768. PubMed ID: 31607065
    [No Abstract]   [Full Text] [Related]  

  • 23. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep-Learning-Based Hemoglobin Concentration Prediction and Anemia Screening Using Ultra-Wide Field Fundus Images.
    Zhao X; Meng L; Su H; Lv B; Lv C; Xie G; Chen Y
    Front Cell Dev Biol; 2022; 10():888268. PubMed ID: 35663399
    [No Abstract]   [Full Text] [Related]  

  • 25. DeepUWF: An Automated Ultra-Wide-Field Fundus Screening System via Deep Learning.
    Zhang W; Zhao X; Chen Y; Zhong J; Yi Z
    IEEE J Biomed Health Inform; 2021 Aug; 25(8):2988-2996. PubMed ID: 33361011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-Widefield Steering-Based Spectral-Domain Optical Coherence Tomography Imaging of the Retinal Periphery.
    Choudhry N; Golding J; Manry MW; Rao RC
    Ophthalmology; 2016 Jun; 123(6):1368-74. PubMed ID: 26992837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.
    Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY
    Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Based Vascular Aging Prediction From Retinal Fundus Images.
    Wang R; Tan Y; Zhong Z; Rao S; Zhou Z; Zhang L; Zhang C; Chen W; Ruan L; Sun X
    Transl Vis Sci Technol; 2024 Jul; 13(7):10. PubMed ID: 38984914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-wide field retinal imaging: A wider clinical perspective.
    Kumar V; Surve A; Kumawat D; Takkar B; Azad S; Chawla R; Shroff D; Arora A; Singh R; Venkatesh P
    Indian J Ophthalmol; 2021 Apr; 69(4):824-835. PubMed ID: 33727441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial Intelligence for Screening of Multiple Retinal and Optic Nerve Diseases.
    Dong L; He W; Zhang R; Ge Z; Wang YX; Zhou J; Xu J; Shao L; Wang Q; Yan Y; Xie Y; Fang L; Wang H; Wang Y; Zhu X; Wang J; Zhang C; Wang H; Wang Y; Chen R; Wan Q; Yang J; Zhou W; Li H; Yao X; Yang Z; Xiong J; Wang X; Huang Y; Chen Y; Wang Z; Rong C; Gao J; Zhang H; Wu S; Jonas JB; Wei WB
    JAMA Netw Open; 2022 May; 5(5):e229960. PubMed ID: 35503220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images.
    Antaki F; Coussa RG; Kahwati G; Hammamji K; Sebag M; Duval R
    Br J Ophthalmol; 2023 Jan; 107(1):90-95. PubMed ID: 34344669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Learning for the Detection of Multiple Fundus Diseases Using Ultra-widefield Images.
    Sun G; Wang X; Xu L; Li C; Wang W; Yi Z; Luo H; Su Y; Zheng J; Li Z; Chen Z; Zheng H; Chen C
    Ophthalmol Ther; 2023 Apr; 12(2):895-907. PubMed ID: 36565376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning.
    Tang YW; Ji J; Lin JW; Wang J; Wang Y; Liu Z; Hu Z; Yang JF; Ng TK; Zhang M; Pang CP; Cen LP
    Asia Pac J Ophthalmol (Phila); 2023 May-Jun 01; 12(3):284-292. PubMed ID: 36912572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning system for screening AIDS-related cytomegalovirus retinitis with ultra-wide-field fundus images.
    Du K; Dong L; Zhang K; Guan M; Chen C; Xie L; Kong W; Li H; Zhang R; Zhou W; Wu H; Dong H; Wei W
    Heliyon; 2024 May; 10(10):e30881. PubMed ID: 38803983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep-learning-based AI for evaluating estimated nonperfusion areas requiring further examination in ultra-widefield fundus images.
    Inoda S; Takahashi H; Yamagata H; Hisadome Y; Kondo Y; Tampo H; Sakamoto S; Katada Y; Kurihara T; Kawashima H; Yanagi Y
    Sci Rep; 2022 Dec; 12(1):21826. PubMed ID: 36528737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning-based Prediction of Axial Length Using Ultra-widefield Fundus Photography.
    Oh R; Lee EK; Bae K; Park UC; Yu HG; Yoon CK
    Korean J Ophthalmol; 2023 Apr; 37(2):95-104. PubMed ID: 36758539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; Laíns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.