BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37856139)

  • 1. A Deep-Learning Algorithm to Predict Short-Term Progression to Geographic Atrophy on Spectral-Domain Optical Coherence Tomography.
    Dow ER; Jeong HK; Katz EA; Toth CA; Wang D; Lee T; Kuo D; Allingham MJ; Hadziahmetovic M; Mettu PS; Schuman S; Carin L; Keane PA; Henao R; Lad EM
    JAMA Ophthalmol; 2023 Nov; 141(11):1052-1061. PubMed ID: 37856139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2.
    Gholami S; Scheppke L; Kshirsagar M; Wu Y; Dodhia R; Bonelli R; Leung I; Sallo FB; Muldrew A; Jamison C; Peto T; Lavista Ferres J; Weeks WB; Friedlander M; Lee AY;
    JAMA Ophthalmol; 2024 Mar; 142(3):226-233. PubMed ID: 38329740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration.
    Veerappan M; El-Hage-Sleiman AM; Tai V; Chiu SJ; Winter KP; Stinnett SS; Hwang TS; Hubbard GB; Michelson M; Gunther R; Wong WT; Chew EY; Toth CA;
    Ophthalmology; 2016 Dec; 123(12):2554-2570. PubMed ID: 27793356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progression of Photoreceptor Degeneration in Geographic Atrophy Secondary to Age-related Macular Degeneration.
    Pfau M; von der Emde L; de Sisternes L; Hallak JA; Leng T; Schmitz-Valckenberg S; Holz FG; Fleckenstein M; Rubin DL
    JAMA Ophthalmol; 2020 Oct; 138(10):1026-1034. PubMed ID: 32789526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Topographic Disease Progression and Treatment Response of Pegcetacoplan in Geographic Atrophy Quantified by Deep Learning.
    Vogl WD; Riedl S; Mai J; Reiter GS; Lachinov D; Bogunović H; Schmidt-Erfurth U
    Ophthalmol Retina; 2023 Jan; 7(1):4-13. PubMed ID: 35948209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans.
    Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA
    JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully-automated atrophy segmentation in dry age-related macular degeneration in optical coherence tomography.
    Derradji Y; Mosinska A; Apostolopoulos S; Ciller C; De Zanet S; Mantel I
    Sci Rep; 2021 Nov; 11(1):21893. PubMed ID: 34751189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.
    Anegondi N; Gao SS; Steffen V; Spaide RF; Sadda SR; Holz FG; Rabe C; Honigberg L; Newton EM; Cluceru J; Kawczynski MG; Bengtsson T; Ferrara D; Yang Q
    Ophthalmol Retina; 2023 Mar; 7(3):243-252. PubMed ID: 36038116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Identification of Incomplete and Complete Retinal Epithelial Pigment and Outer Retinal Atrophy Using Machine Learning.
    Chiang JN; Corradetti G; Nittala MG; Corvi F; Rakocz N; Rudas A; Durmus B; An U; Sankararaman S; Chiu A; Halperin E; Sadda SR
    Ophthalmol Retina; 2023 Feb; 7(2):118-126. PubMed ID: 35995411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Anatomic Precursors to New-Onset Geographic Atrophy in Age-Related Macular Degeneration as Defined on OCT.
    Pasricha MV; Tai V; Sleiman K; Winter K; Chiu SJ; Farsiu S; Stinnett SS; Lad EM; Wong WT; Chew EY; Toth CA;
    Ophthalmol Retina; 2021 May; 5(5):396-408. PubMed ID: 33348086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.
    Hu Z; Medioni GG; Hernandez M; Hariri A; Wu X; Sadda SR
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8375-83. PubMed ID: 24265015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning OCT predictors of progression from intermediate age-related macular degeneration to geographic atrophy and vision loss.
    Lad E; Sleiman K; Banks DL; Hariharan S; Clemons T; Herrmann R; Dauletbekov D; Giani A; Chong V; Chew EY; Toth CA
    Ophthalmol Sci; 2022 Jun; 2(2):. PubMed ID: 35662803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Coherence Tomography Predictors of Risk for Progression to Non-Neovascular Atrophic Age-Related Macular Degeneration.
    Sleiman K; Veerappan M; Winter KP; McCall MN; Yiu G; Farsiu S; Chew EY; Clemons T; Toth CA;
    Ophthalmology; 2017 Dec; 124(12):1764-1777. PubMed ID: 28847641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT.
    Pramil V; de Sisternes L; Omlor L; Lewis W; Sheikh H; Chu Z; Manivannan N; Durbin M; Wang RK; Rosenfeld PJ; Shen M; Guymer R; Liang MC; Gregori G; Waheed NK
    Ophthalmol Retina; 2023 Feb; 7(2):127-141. PubMed ID: 35970318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Geographic Atrophy Using Spectral Domain OCT in Age-Related Macular Degeneration.
    Cleland SC; Konda SM; Danis RP; Huang Y; Myers DJ; Blodi BA; Domalpally A
    Ophthalmol Retina; 2021 Jan; 5(1):41-48. PubMed ID: 32679202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT.
    Mai J; Lachinov D; Reiter GS; Riedl S; Grechenig C; Bogunovic H; Schmidt-Erfurth U
    Ophthalmol Sci; 2024; 4(4):100466. PubMed ID: 38591046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning automated quantification of longitudinal OCT scans demonstrates reduced RPE loss rate, preservation of intact macular area and predictive value of isolated photoreceptor degeneration in geographic atrophy patients receiving C3 inhibition treatment.
    Fu DJ; Glinton S; Lipkova V; Faes L; Liefers B; Zhang G; Pontikos N; McKeown A; Scheibler L; Patel PJ; Keane PA; Balaskas K
    Br J Ophthalmol; 2024 Mar; 108(4):536-545. PubMed ID: 37094835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Drusen and Hyperreflective Foci as Biomarkers for Disease Progression in Age-Related Macular Degeneration Using Artificial Intelligence in Optical Coherence Tomography.
    Waldstein SM; Vogl WD; Bogunovic H; Sadeghipour A; Riedl S; Schmidt-Erfurth U
    JAMA Ophthalmol; 2020 Jul; 138(7):740-747. PubMed ID: 32379287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.