These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37856139)

  • 21. Correlation between Fundus Autofluorescence and En Face OCT Measurements of Geographic Atrophy.
    Velaga SB; Nittala MG; Hariri A; Sadda SR
    Ophthalmol Retina; 2022 Aug; 6(8):676-683. PubMed ID: 35338026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving Interpretability in Machine Diagnosis: Detection of Geographic Atrophy in OCT Scans.
    Shi X; Keenan TDL; Chen Q; De Silva T; Thavikulwat AT; Broadhead G; Bhandari S; Cukras C; Chew EY; Lu Z
    Ophthalmol Sci; 2021 Sep; 1(3):100038. PubMed ID: 36247813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: trained deep learning algorithm.
    Rim TH; Lee AY; Ting DS; Teo K; Betzler BK; Teo ZL; Yoo TK; Lee G; Kim Y; Lin AC; Kim SE; Tham YC; Kim SS; Cheng CY; Wong TY; Cheung CMG
    Br J Ophthalmol; 2021 Aug; 105(8):1133-1139. PubMed ID: 32907811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully Automated Prediction of Geographic Atrophy Growth Using Quantitative Spectral-Domain Optical Coherence Tomography Biomarkers.
    Niu S; de Sisternes L; Chen Q; Rubin DL; Leng T
    Ophthalmology; 2016 Aug; 123(8):1737-1750. PubMed ID: 27262765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography.
    Huang J; Galal G; Mukhin V; Etemadi M; Tanna AP
    J Glaucoma; 2024 Apr; 33(4):246-253. PubMed ID: 38245813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration.
    Bui PTA; Reiter GS; Fabianska M; Waldstein SM; Grechenig C; Bogunovic H; Arikan M; Schmidt-Erfurth U
    Eye (Lond); 2022 Oct; 36(10):2013-2019. PubMed ID: 34400806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microperimetry Features of Geographic Atrophy Identified With En Face Optical Coherence Tomography.
    Pilotto E; Convento E; Guidolin F; Abalsamo CK; Longhin E; Parrozzani R; Midena E
    JAMA Ophthalmol; 2016 Aug; 134(8):873-9. PubMed ID: 27253760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Central Macular Fluid Volume With Central Subfield Thickness in Patients With Diabetic Macular Edema Using Optical Coherence Tomography Angiography.
    You QS; Tsuboi K; Guo Y; Wang J; Flaxel CJ; Bailey ST; Huang D; Jia Y; Hwang TS
    JAMA Ophthalmol; 2021 Jul; 139(7):734-741. PubMed ID: 33983385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Pegcetacoplan Treatment on Photoreceptor Maintenance in Geographic Atrophy Monitored by Artificial Intelligence-Based OCT Analysis.
    Riedl S; Vogl WD; Mai J; Reiter GS; Lachinov D; Grechenig C; McKeown A; Scheibler L; Bogunović H; Schmidt-Erfurth U
    Ophthalmol Retina; 2022 Nov; 6(11):1009-1018. PubMed ID: 35667569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Deep Learning-Quantified Hyperreflective Foci for the Prediction of Geographic Atrophy Progression.
    Schmidt-Erfurth U; Bogunovic H; Grechenig C; Bui P; Fabianska M; Waldstein S; Reiter GS
    Am J Ophthalmol; 2020 Aug; 216():257-270. PubMed ID: 32277942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy.
    Schaal KB; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2017 Feb; 174():145-154. PubMed ID: 27864062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration.
    Wu Z; Luu CD; Ayton LN; Goh JK; Lucci LM; Hubbard WC; Hageman JL; Hageman GS; Guymer RH
    Ophthalmology; 2014 Dec; 121(12):2415-22. PubMed ID: 25109931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Human Central Nervous System Stem Cell Subretinal Transplantation on Progression of Geographic Atrophy Secondary to Nonneovascular Age-Related Macular Degeneration.
    Nittala MG; Uji A; Velaga SB; Hariri AH; Naor J; Birch DG; Spencer R; Leng T; Capela A; Tsukamoto A; Ip M; Sadda SR
    Ophthalmol Retina; 2021 Jan; 5(1):32-40. PubMed ID: 32562884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning.
    Balaskas K; Glinton S; Keenan TDL; Faes L; Liefers B; Zhang G; Pontikos N; Struyven R; Wagner SK; McKeown A; Patel PJ; Keane PA; Fu DJ
    Sci Rep; 2022 Sep; 12(1):15565. PubMed ID: 36114218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of optical coherence tomography-derived shape and texture features are associated with development of sub-foveal geographic atrophy in dry AMD.
    Kar SS; Cetin H; Abraham J; Srivastava SK; Madabhushi A; Ehlers JP
    Sci Rep; 2024 Jul; 14(1):17602. PubMed ID: 39080402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration.
    Fleckenstein M; Schmitz-Valckenberg S; Adrion C; Krämer I; Eter N; Helb HM; Brinkmann CK; Charbel Issa P; Mansmann U; Holz FG
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3846-52. PubMed ID: 20357194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Nonexudative Macular Neovascularization on Structural OCT Images Using Vision Transformers.
    Kihara Y; Shen M; Shi Y; Jiang X; Wang L; Laiginhas R; Lyu C; Yang J; Liu J; Morin R; Lu R; Fujiyoshi H; Feuer WJ; Gregori G; Rosenfeld PJ; Lee AY
    Ophthalmol Sci; 2022 Dec; 2(4):100197. PubMed ID: 36531577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.