These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37856164)

  • 1. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy.
    Sebastian FL; Becker F; Yomogida Y; Hosokawa Y; Settele S; Lindenthal S; Yanagi K; Zaumseil J
    ACS Nano; 2023 Nov; 17(21):21771-21781. PubMed ID: 37856164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute Quantification of sp
    Sebastian FL; Zorn NF; Settele S; Lindenthal S; Berger FJ; Bendel C; Li H; Flavel BS; Zaumseil J
    J Phys Chem Lett; 2022 Apr; 13(16):3542-3548. PubMed ID: 35420437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Carrier Dynamics in
    Zheng W; Zorn NF; Bonn M; Zaumseil J; Wang HI
    ACS Nano; 2022 Jun; 16(6):9401-9409. PubMed ID: 35709437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes.
    Gifford BJ; Kilina S; Htoon H; Doorn SK; Tretiak S
    Acc Chem Res; 2020 Sep; 53(9):1791-1801. PubMed ID: 32805109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals.
    Berger FJ; de Sousa JA; Zhao S; Zorn NF; El Yumin AA; Quintana García A; Settele S; Högele A; Crivillers N; Zaumseil J
    ACS Nano; 2021 Mar; 15(3):5147-5157. PubMed ID: 33600164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge Transport in and Electroluminescence from sp
    Zorn NF; Berger FJ; Zaumseil J
    ACS Nano; 2021 Jun; 15(6):10451-10463. PubMed ID: 34048654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes.
    Ghosh S; Wei F; Bachilo SM; Hauge RH; Billups WE; Weisman RB
    ACS Nano; 2015 Jun; 9(6):6324-32. PubMed ID: 26027688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy.
    Tian Y; Jiang H; Laiho P; Kauppinen EI
    Anal Chem; 2018 Feb; 90(4):2517-2525. PubMed ID: 29334731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes.
    Wieland S; El Yumin AA; Settele S; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(5):2012-2021. PubMed ID: 38352856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Exciton Trapping at
    Sykes ME; Kim M; Wu X; Wiederrecht GP; Peng L; Wang Y; Gosztola DJ; Ma X
    ACS Nano; 2019 Nov; 13(11):13264-13270. PubMed ID: 31661244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband Full-Spectrum Raman Excitation Mapping Reveals Intricate Optoelectronic-Vibrational Resonance Structure of Chirality-Pure Single-Walled Carbon Nanotubes.
    Finnie P; Ouyang J; Fagan JA
    ACS Nano; 2023 Apr; 17(8):7285-7295. PubMed ID: 37010116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes.
    Chen JS; Dasgupta A; Morrow DJ; Emmanuele R; Marks TJ; Hersam MC; Ma X
    ACS Nano; 2022 Oct; 16(10):16776-16783. PubMed ID: 36121213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Electroluminescence from Functionalized SWCNT Networks Further into the Near-Infrared.
    Zorn NF; Settele S; Sebastian FL; Lindenthal S; Zaumseil J
    ACS Appl Opt Mater; 2023 Oct; 1(10):1706-1714. PubMed ID: 37915970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of Chemical Dopants in Simulated Resonance Raman Spectroscopy of Carbon Nanotubes.
    Weight BM; Zheng M; Tretiak S
    J Phys Chem Lett; 2023 Feb; 14(5):1182-1191. PubMed ID: 36715511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes.
    Gifford BJ; Saha A; Weight BM; He X; Ao G; Zheng M; Htoon H; Kilina S; Doorn SK; Tretiak S
    Nano Lett; 2019 Dec; 19(12):8503-8509. PubMed ID: 31682455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic Formation of Quantum Defects in Carbon Nanotubes.
    Ma C; Schrage CA; Gretz J; Akhtar A; Sistemich L; Schnitzler L; Li H; Tschulik K; Flavel BS; Kruss S
    ACS Nano; 2023 Aug; 17(16):15989-15998. PubMed ID: 37527201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the Properties of Single-Wall Carbon Nanotube Samples through Structure-Selective Near-Infrared Photochemistry.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2020 Aug; 11(16):6492-6497. PubMed ID: 32697092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.