BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37856442)

  • 1. OpenCap: Human movement dynamics from smartphone videos.
    Uhlrich SD; Falisse A; Kidziński Ł; Muccini J; Ko M; Chaudhari AS; Hicks JL; Delp SL
    PLoS Comput Biol; 2023 Oct; 19(10):e1011462. PubMed ID: 37856442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibrationless monocular vision musculoskeletal simulation during gait.
    Ueno R
    Heliyon; 2024 Jun; 10(11):e32078. PubMed ID: 38868012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case?
    Bélaise C; Michaud B; Dal Maso F; Mombaur K; Begon M
    J Biomech; 2018 Feb; 68():99-106. PubMed ID: 29325902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Pose Estimation in Human Health and Performance across the Lifespan.
    Stenum J; Cherry-Allen KM; Pyles CO; Reetzke RD; Vignos MF; Roemmich RT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
    Werling K; Bianco NA; Raitor M; Stingel J; Hicks JL; Collins SH; Delp SL; Liu CK
    PLoS One; 2023; 18(11):e0295152. PubMed ID: 38033114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait.
    Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B
    J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards wearable and portable spine motion analysis through dynamic optimization of smartphone videos and IMU data.
    Wang W; Peng Y; Sun Y; Wang J; Li G
    IEEE J Biomed Health Inform; 2024 Jun; PP():. PubMed ID: 38923475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C
    Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graphics-based software system to develop and analyze models of musculoskeletal structures.
    Delp SL; Loan JP
    Comput Biol Med; 1995 Jan; 25(1):21-34. PubMed ID: 7600758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OpenSim: open-source software to create and analyze dynamic simulations of movement.
    Delp SL; Anderson FC; Arnold AS; Loan P; Habib A; John CT; Guendelman E; Thelen DG
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1940-50. PubMed ID: 18018689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
    Hu J; Chen Z; Xin H; Zhang Q; Jin Z
    Proc Inst Mech Eng H; 2018 May; 232(5):508-519. PubMed ID: 29637803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-informed Deep Learning for Musculoskeletal Modelling: Predicting Muscle Forces and Joint Kinematics from Surface EMG.
    Zhang J; Zhao Y; Shone F; Li Z; Frangi AF; Xie SQ; Zhang ZQ
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
    Werling K; Bianco NA; Raitor M; Stingel J; Hicks JL; Collins SH; Delp SL; Liu CK
    bioRxiv; 2023 Sep; ():. PubMed ID: 37398034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee.
    Navacchia A; Kefala V; Shelburne KB
    Ann Biomed Eng; 2017 Mar; 45(3):789-798. PubMed ID: 27620064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.