These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 37856458)

  • 1. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FSCAM: CAM-Based Feature Selection for Clustering scRNA-seq.
    Wang Y; Gao J; Xuan C; Guan T; Wang Y; Zhou G; Ding T
    Interdiscip Sci; 2022 Jun; 14(2):394-408. PubMed ID: 35028910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CTISL: a dynamic stacking multi-class classification approach for identifying cell types from single-cell RNA-seq data.
    Wang X; Chai Z; Li S; Liu Y; Li C; Jiang Y; Liu Q
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Type Annotation Model Selection: General-Purpose vs. Pattern-Aware Feature Gene Selection in Single-Cell RNA-Seq Data.
    Vasighizaker A; Trivedi Y; Rueda L
    Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate feature selection improves single-cell RNA-seq cell clustering.
    Su K; Yu T; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis.
    Huang H; Liu C; Wagle MM; Yang P
    Genome Biol; 2023 Nov; 24(1):259. PubMed ID: 37950331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One Cell At a Time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data.
    Wang CX; Zhang L; Wang B
    Genome Biol; 2022 Apr; 23(1):102. PubMed ID: 35443717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data.
    Wu W; Liu Z; Ma X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33535230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.