These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 37856693)
41. Root system traits impact early fire blight susceptibility in apple (Malus × domestica). Singh J; Fabrizio J; Desnoues E; Silva JP; Busch W; Khan A BMC Plant Biol; 2019 Dec; 19(1):579. PubMed ID: 31870310 [TBL] [Abstract][Full Text] [Related]
42. Reproducible Quantitative Trait Loci for Resistance to Soft Rot Caused by Fenstemaker S; Ma X; Bamberg J; Swingle B Phytopathology; 2024 Mar; 114(3):580-589. PubMed ID: 37750865 [TBL] [Abstract][Full Text] [Related]
43. Mapping of quantitative trait loci for scab resistance in apple (Malus × domestica) variety, Shireen. Mir S; Sakina A; Masoodi KZ; Bhat KM; Padder BA; Murtaza I; Nazir N; Bhat ZA; Wani SH; Shikari AB Mol Biol Rep; 2022 Jun; 49(6):5555-5566. PubMed ID: 35579736 [TBL] [Abstract][Full Text] [Related]
44. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. Antanaviciute L; Fernández-Fernández F; Jansen J; Banchi E; Evans KM; Viola R; Velasco R; Dunwell JM; Troggio M; Sargent DJ BMC Genomics; 2012 May; 13():203. PubMed ID: 22631220 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. McGhee GC; Sundin GW Phytopathology; 2011 Feb; 101(2):192-204. PubMed ID: 20923369 [TBL] [Abstract][Full Text] [Related]
46. First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. Bokszczanin K; Dondini L; Przybyla AA J Appl Genet; 2009; 50(2):99-103. PubMed ID: 19433906 [TBL] [Abstract][Full Text] [Related]
47. Complete Genome Sequence of the Fire Blight Pathogen Strain Yu M; Singh J; Khan A; Sundin GW; Zhao Y Mol Plant Microbe Interact; 2020 Nov; 33(11):1277-1279. PubMed ID: 32808873 [No Abstract] [Full Text] [Related]
48. Expression of the Type III Secretion System Genes in Epiphytic Cui Z; Huntley RB; Schultes NP; Kakar KU; Yang CH; Zeng Q Mol Plant Microbe Interact; 2021 Oct; 34(10):1119-1127. PubMed ID: 34698527 [No Abstract] [Full Text] [Related]
49. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Pontais I; Treutter D; Paulin JP; Brisset MN Physiol Plant; 2008 Mar; 132(3):262-71. PubMed ID: 18275458 [TBL] [Abstract][Full Text] [Related]
50. Virulence Genetics of an Erwinia amylovora Putative Polysaccharide Transporter Family Member. Klee SM; Sinn JP; Christian E; Holmes AC; Zhao K; Lehman BL; Peter KA; Rosa C; McNellis TW J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32839177 [TBL] [Abstract][Full Text] [Related]
51. Fire Blight Resistance in Wild Accessions of Malus sieversii. Harshman JM; Evans KM; Allen H; Potts R; Flamenco J; Aldwinckle HS; Wisniewski ME; Norelli JL Plant Dis; 2017 Oct; 101(10):1738-1745. PubMed ID: 30676925 [TBL] [Abstract][Full Text] [Related]
52. Identification of serine/threonine kinase and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar 'Evereste'. Parravicini G; Gessler C; Denancé C; Lasserre-Zuber P; Vergne E; Brisset MN; Patocchi A; Durel CE; Broggini GA Mol Plant Pathol; 2011 Jun; 12(5):493-505. PubMed ID: 21535354 [TBL] [Abstract][Full Text] [Related]
53. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora. Holtappels M; Vrancken K; Noben JP; Remans T; Schoofs H; Deckers T; Valcke R J Proteomics; 2016 Apr; 139():1-12. PubMed ID: 26924300 [TBL] [Abstract][Full Text] [Related]
54. Comparative analysis on natural variants of fire blight resistance protein FB_MR5 indicates distinct effector recognition mechanisms. Kim H; Kim J; Kim M; Park JT; Sohn KH Mol Cells; 2024 Aug; 47(8):100094. PubMed ID: 39029627 [TBL] [Abstract][Full Text] [Related]
55. Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against Sabri M; El Handi K; Valentini F; De Stradis A; Achbani EH; Benkirane R; Resch G; Elbeaino T Viruses; 2022 Nov; 14(11):. PubMed ID: 36366553 [No Abstract] [Full Text] [Related]
56. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Neelam K; Mahajan R; Gupta V; Bhatia D; Gill BK; Komal R; Lore JS; Mangat GS; Singh K Theor Appl Genet; 2020 Mar; 133(3):689-705. PubMed ID: 31811315 [TBL] [Abstract][Full Text] [Related]
57. An Erwinia amylovora inducible promoter for improvement of apple fire blight resistance. Gaucher M; Righetti L; Aubourg S; Dugé de Bernonville T; Brisset MN; Chevreau E; Vergne E Plant Cell Rep; 2022 Jul; 41(7):1499-1513. PubMed ID: 35385991 [TBL] [Abstract][Full Text] [Related]
58. Contributions of Reduced Susceptibility Alleles in Breeding Apple Cultivars with Durable Resistance to Fire Blight. Kostick SA; Teh SL; Evans KM Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33671812 [TBL] [Abstract][Full Text] [Related]
59. Functional characterization of the adenine transporter EaAdeP from the fire blight pathogen Erwinia amylovora and its effect on disease establishment in apples and pears. Alexander CR; Huntley RB; Schultes NP; Mourad GS FEMS Microbiol Lett; 2020 Nov; 367(20):. PubMed ID: 33152083 [TBL] [Abstract][Full Text] [Related]
60. Cold storage affects survival and growth of Erwinia amylovora on the calyx of apple. Taylor RK; Hale CN Lett Appl Microbiol; 2003; 37(4):340-3. PubMed ID: 12969500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]