BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37856696)

  • 1. A Fast, Robust Method for Quantitative Assessment of Collagen Fibril Architecture from Transmission Electron Micrographs.
    Rego BV; Weiss D; Humphrey JD
    Microsc Microanal; 2023 Dec; 29(6):2099-2107. PubMed ID: 37856696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fast, robust method for quantitative assessment of collagen fibril architecture from transmission electron micrographs.
    Rego BV; Weiss D; Humphrey JD
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fibril abnormalities in human and mice abdominal aortic aneurysm.
    Jones B; Tonniges JR; Debski A; Albert B; Yeung DA; Gadde N; Mahajan A; Sharma N; Calomeni EP; Go MR; Hans CP; Agarwal G
    Acta Biomater; 2020 Jul; 110():129-140. PubMed ID: 32339711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a facile method to compute collagen network pathological anisotropy using AFM imaging.
    Khattignavong E; Neshatian M; Vaez M; Guillermin A; Tauer JT; Odlyha M; Mittal N; Komarova SV; Zahouani H; Bozec L
    Sci Rep; 2023 Nov; 13(1):20173. PubMed ID: 37978303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization.
    Starborg T; Kalson NS; Lu Y; Mironov A; Cootes TF; Holmes DF; Kadler KE
    Nat Protoc; 2013; 8(7):1433-48. PubMed ID: 23807286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Options for determination of 2-D distribution of collagen fibrils in transmission electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2011 Feb; 74(2):184-95. PubMed ID: 20564523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of collagen fibril spacing in relation to selected region of interest (ROI) on electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2012 Apr; 75(4):474-83. PubMed ID: 21919128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type V collagen controls the initiation of collagen fibril assembly.
    Wenstrup RJ; Florer JB; Brunskill EW; Bell SM; Chervoneva I; Birk DE
    J Biol Chem; 2004 Dec; 279(51):53331-7. PubMed ID: 15383546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STEM/TEM studies of collagen fibril assembly.
    Holmes DF; Graham HK; Trotter JA; Kadler KE
    Micron; 2001 Apr; 32(3):273-85. PubMed ID: 11006507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of collagen fibril seeds from embryonic tendon: fractured fibril ends nucleate new tip growth.
    Holmes DF; Tait A; Hodson NW; Sherratt MJ; Kadler KE
    J Mol Biol; 2010 May; 399(1):9-16. PubMed ID: 20385142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of collagen in bone structure: an image processing approach.
    Tzaphlidou M
    Micron; 2005; 36(7-8):593-601. PubMed ID: 16209926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure and immunohistochemical identification of the extracellular matrix of the chinchilla cochlea.
    Tsuprun V; Santi P
    Hear Res; 1999 Mar; 129(1-2):35-49. PubMed ID: 10190750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagenous tissues upon lithium treatment: a quantitative ultrastructural study.
    Tzaphlidou M
    ScientificWorldJournal; 2004 Aug; 4():605-21. PubMed ID: 15349503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of dermatopontin in the stromal organization of the cornea.
    Cooper LJ; Bentley AJ; Nieduszynski IA; Talabani S; Thomson A; Utani A; Shinkai H; Fullwood NJ; Brown GM
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3303-10. PubMed ID: 16877395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen fibril assembly and deposition in the developing dermis: segmental deposition in extracellular compartments.
    Ploetz C; Zycband EI; Birk DE
    J Struct Biol; 1991 Feb; 106(1):73-81. PubMed ID: 2059553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load.
    Pukaluk A; Wittgenstein AS; Leitinger G; Kolb D; Pernitsch D; Schneider SA; Knöbelreiter P; Horak V; Bredies K; Holzapfel GA; Pock T; Sommer G
    Acta Biomater; 2022 Mar; 141():300-314. PubMed ID: 35065266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Averaged spacing and 2-d organization of collagen fibrils in the posterior cornea of the rabbit eye assessed by transmission electron microscopy.
    Doughty MJ
    Curr Eye Res; 2014 Apr; 39(4):329-39. PubMed ID: 23841461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.
    Goh KL; Holmes DF
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging.
    Landis WJ; Song MJ
    J Struct Biol; 1991 Oct; 107(2):116-27. PubMed ID: 1807348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational segmentation of collagen fibers in bone matrix indicates bone quality in ovariectomized rat spine.
    Daghma DES; Malhan D; Simon P; Stötzel S; Kern S; Hassan F; Lips KS; Heiss C; El Khassawna T
    J Bone Miner Metab; 2018 May; 36(3):297-306. PubMed ID: 28589410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.