BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37857009)

  • 1. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model.
    Lee S; Jeong H; Hong SM; Yun D; Lee J; Kim E; Cho KH
    Water Res; 2023 Nov; 246():120710. PubMed ID: 37857009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging deep learning for automatic recognition of microplastics (MPs) via focal plane array (FPA) micro-FT-IR imaging.
    Zhu Z; Parker W; Wong A
    Environ Pollut; 2023 Nov; 337():122548. PubMed ID: 37757933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence indicator for source discrimination between microplastic-derived dissolved organic matter and aquatic natural organic matter.
    Lee YK; Hong S; Hur J
    Water Res; 2021 Dec; 207():117833. PubMed ID: 34775168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep convolutional neural networks for aged microplastics identification by Fourier transform infrared spectra classification.
    Zeng G; Ma Y; Du M; Chen T; Lin L; Dai M; Luo H; Hu L; Zhou Q; Pan X
    Sci Total Environ; 2024 Feb; 913():169623. PubMed ID: 38159742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning analysis for rapid detection and classification of household plastics based on Raman spectroscopy.
    Qin Y; Qiu J; Tang N; He Y; Fan L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123854. PubMed ID: 38228011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Classification of Large-Scale Blended (Micro)Plastics Using FT-IR Raw Spectra and Image-Based Machine Learning.
    Liu Y; Yao W; Qin F; Zhou L; Zheng Y
    Environ Sci Technol; 2023 Apr; 57(16):6656-6663. PubMed ID: 37052503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stratification of tumour cell radiation response and metabolic signatures visualization with Raman spectroscopy and explainable convolutional neural network.
    Fuentes AM; Milligan K; Wiebe M; Narayan A; Lum JJ; Brolo AG; Andrews JL; Jirasek A
    Analyst; 2024 Feb; 149(5):1645-1657. PubMed ID: 38312026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra─A Case Study in Microplastic Analyses.
    Brandt J; Mattsson K; Hassellöv M
    Anal Chem; 2021 Dec; 93(49):16360-16368. PubMed ID: 34807556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy.
    Ren L; Liu S; Huang S; Wang Q; Lu Y; Song J; Guo J
    Talanta; 2023 Aug; 260():124611. PubMed ID: 37163925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceeding the categorization of microplastics through deep learning-based image segmentation.
    Huang H; Cai H; Qureshi JU; Mehdi SR; Song H; Liu C; Di Y; Shi H; Yao W; Sun Z
    Sci Total Environ; 2023 Oct; 896():165308. PubMed ID: 37414186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis.
    Jin N; Song Y; Ma R; Li J; Li G; Zhang D
    Anal Chim Acta; 2022 Mar; 1197():339519. PubMed ID: 35168726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging.
    Zhang Y; Hong D; McClement D; Oladosu O; Pridham G; Slaney G
    J Neurosci Methods; 2021 Apr; 353():109098. PubMed ID: 33582174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology.
    Xu L; Chen Y; Feng A; Shi X; Feng Y; Yang Y; Wang Y; Wu Z; Zou Z; Ma W; He Y; Yang N; Feng J; Zhao Y
    Environ Res; 2023 Sep; 232():116389. PubMed ID: 37302742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of organic additives on spectroscopic and molecular-level features of photo-induced dissolved organic matter from microplastics.
    Lee YK; He W; Guo H; Karanfil T; Hur J
    Water Res; 2023 Aug; 242():120272. PubMed ID: 37393811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct identification and visualisation of real-world contaminating microplastics using Raman spectral mapping with multivariate curve resolution-alternating least squares.
    Tian M; Morais CLM; Shen H; Pang W; Xu L; Huang Q; Martin FL
    J Hazard Mater; 2022 Jan; 422():126892. PubMed ID: 34425427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning.
    Shi B; Patel M; Yu D; Yan J; Li Z; Petriw D; Pruyn T; Smyth K; Passeport E; Miller RJD; Howe JY
    Sci Total Environ; 2022 Jun; 825():153903. PubMed ID: 35192829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Spectroscopy for the Analysis of Microplastics in Aquatic Systems.
    Nava V; Frezzotti ML; Leoni B
    Appl Spectrosc; 2021 Nov; 75(11):1341-1357. PubMed ID: 34541936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Component identification for the SERS spectra of microplastics mixture with convolutional neural network.
    Luo Y; Su W; Xu D; Wang Z; Wu H; Chen B; Wu J
    Sci Total Environ; 2023 Oct; 895():165138. PubMed ID: 37379925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aberration-free line scan confocal Raman imager and type classification and distribution detection of microplastics.
    Jiao C; Liao J; He S
    J Hazard Mater; 2024 May; 470():134191. PubMed ID: 38579584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of biofilms formed on polystyrene microplastics (PS-MPs) on the shore of the Tuul River, Mongolia.
    Battulga B; Kawahigashi M; Oyuntsetseg B
    Environ Res; 2022 Sep; 212(Pt B):113329. PubMed ID: 35472460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.