BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37857276)

  • 1. Enhancing Benzene Combustion Activity through Preferential Platinum Atom Exposure via Strategic Pt-Cu Alloying.
    Chen W; Huang Z; Ni J; Zhou Q; Wu X; Shen H; Zhao H; Jing G
    Langmuir; 2023 Oct; 39(43):15343-15354. PubMed ID: 37857276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzene Oxidation in Air by an Amine-Functionalized Metal-Organic Framework-Derived Carbon- and Nitrogen-Loaded Zirconium Dioxide-Supported Platinum Catalyst.
    Vikrant K; Kim KH; Boukhvalov DW; Heynderickx PM
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33669-33687. PubMed ID: 38912904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-organic frameworks-derived manganese trioxide with uniformly loaded ultrasmall platinum nanoparticles boosting benzene combustion.
    Wang Y; Li X; Xiao J; Chen D; Li N; Xu Q; Li H; He J; Lu J
    Sci Total Environ; 2022 Sep; 839():156345. PubMed ID: 35654198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of trimetallic Pt-Pd-Au/CeO2 catalysts combinatorial designed for methane total oxidation.
    Tompos A; Margitfalvi JL; Hegedus M; Szegedi A; Fierro JL; Rojas S
    Comb Chem High Throughput Screen; 2007 Jan; 10(1):71-82. PubMed ID: 17266518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant Enhanced SO
    Yang D; Dong F; Han W; Zhang J; Tang Z
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42541-42556. PubMed ID: 37665651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature oxidative removal of benzene from the air using titanium carbide (MXene)-Supported platinum catalysts.
    Wang J; Vikrant K; Younis SA; Kim KH; Heynderickx PM
    Chemosphere; 2024 Feb; 350():141114. PubMed ID: 38184080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ observations of the structural dynamics of platinum-cobalt-hydroxide nanocatalysts under CO oxidation.
    Huang L; Song X; Lin Y; Liu C; He W; Wang S; Long Z; Sun Z
    Nanoscale; 2020 Feb; 12(5):3273-3283. PubMed ID: 31971202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the Cost and Preserving the Reactivity in Noble-Metal-Based Catalysts: Oxidation of CO by Pt and Al-Pt Alloy Clusters Supported on Graphene.
    Koizumi K; Nobusada K; Boero M
    Chemistry; 2016 Apr; 22(15):5181-8. PubMed ID: 26878836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting catalytic stability for VOCs removal by constructing PtCu alloy structure with superior oxygen activation behavior.
    Feng Y; Wei L; Wang Z; Liu Y; Dai H; Wang C; Hsi HC; Duan E; Peng Y; Deng J
    J Hazard Mater; 2022 Oct; 439():129612. PubMed ID: 35872456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow ZSM-5 zeolite encapsulating Pt nanoparticles: Cage-confinement effects for the enhanced catalytic oxidation of benzene.
    Tian J; Tan KB; Liao Y; Sun D; Li Q
    Chemosphere; 2022 Apr; 292():133446. PubMed ID: 34968510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media.
    Singh B; Murad L; Laffir F; Dickinson C; Dempsey E
    Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mo-modified Pd/Al₂O₃ catalysts for benzene catalytic combustion.
    He Z; He Z; Wang D; Bo Q; Fan T; Jiang Y
    J Environ Sci (China); 2014 Jul; 26(7):1481-7. PubMed ID: 25079997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt-Co Alloy Nanoparticles on a γ-Al
    Sato K; Ito A; Tomonaga H; Kanematsu H; Wada Y; Asakura H; Hosokawa S; Tanaka T; Toriyama T; Yamamoto T; Matsumura S; Nagaoka K
    Chempluschem; 2019 May; 84(5):447-456. PubMed ID: 31943901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.
    Deshpande PA; Madras G
    Phys Chem Chem Phys; 2011 Jan; 13(2):708-18. PubMed ID: 21060910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Pt NiNC-Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts-In Situ Tracking of the Atomic Alloying Process.
    Feng Q; Wang X; Klingenhof M; Heggen M; Strasser P
    Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202203728. PubMed ID: 35802306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.
    Wei YC; Liu CW; Wang KW
    Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation.
    Han T; Li Y; Cao Y; Lee I; Zhou X; Frenkel AI; Zaera F
    J Chem Phys; 2022 Dec; 157(23):234706. PubMed ID: 36550054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous cobalt monoxide-supported platinum nanoparticles: Superior catalysts for the oxidative removal of benzene.
    Yang J; Xue Y; Liu Y; Deng J; Jiang X; Chen H; Dai H
    J Environ Sci (China); 2020 Apr; 90():170-179. PubMed ID: 32081313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.