These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37857374)

  • 1. Efficient Exploration of Chemical Compound Space Using Active Learning for Prediction of Thermodynamic Properties of Alkane Molecules.
    Xiang Y; Tang YH; Gong Z; Liu H; Wu L; Lin G; Sun H
    J Chem Inf Model; 2023 Nov; 63(21):6515-6524. PubMed ID: 37857374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of Marginalized Graph Kernel and Message-Passing Neural Network.
    Xiang Y; Tang YH; Lin G; Sun H
    J Chem Inf Model; 2021 Nov; 61(11):5414-5424. PubMed ID: 34723539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks.
    Xue LY; Guo F; Wen YS; Feng SQ; Huang XN; Guo L; Li HS; Cui SX; Zhang GQ; Wang QL
    Phys Chem Chem Phys; 2021 Sep; 23(35):19457-19464. PubMed ID: 34524283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Thermodynamic Properties of Alkanes by High-Throughput Force Field Simulation and Machine Learning.
    Gong Z; Wu Y; Wu L; Sun H
    J Chem Inf Model; 2018 Dec; 58(12):2502-2516. PubMed ID: 30205676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable Molecular Property Predictions Using Marginalized Graph Kernels.
    Xiang Y; Tang YH; Lin G; Reker D
    J Chem Inf Model; 2023 Aug; 63(15):4633-4640. PubMed ID: 37504964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties?
    Li SC; Wu H; Menon A; Spiekermann KA; Li YP; Green WH
    J Am Chem Soc; 2024 Aug; 146(33):23103-23120. PubMed ID: 39106041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction.
    Liu C; Sun Y; Davis R; Cardona ST; Hu P
    J Cheminform; 2023 Feb; 15(1):29. PubMed ID: 36843022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Energetics Materials' Crystalline Density from Chemical Structure by Machine Learning.
    Nguyen P; Loveland D; Kim JT; Karande P; Hiszpanski AM; Han TY
    J Chem Inf Model; 2021 May; 61(5):2147-2158. PubMed ID: 33899482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Single-Substance Phase Diagrams: A Kernel Approach on Graph Representations of Molecules.
    Xiang Y; Tang YH; Liu H; Lin G; Sun H
    J Phys Chem A; 2021 May; 125(20):4488-4497. PubMed ID: 33999627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning.
    Biswas S; Chung Y; Ramirez J; Wu H; Green WH
    J Chem Inf Model; 2023 Aug; 63(15):4574-4588. PubMed ID: 37487557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.
    Vysotsky YB; Kartashynska ES; Belyaeva EA; Fainerman VB; Vollhardt D; Miller R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28901-20. PubMed ID: 26455734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Message Passing for NMR Chemical Shift Prediction.
    Kwon Y; Lee D; Choi YS; Kang M; Kang S
    J Chem Inf Model; 2020 Apr; 60(4):2024-2030. PubMed ID: 32250618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Modeling of NMR Chemical Shifts without Using Atomic-Level Annotations.
    Kang S; Kwon Y; Lee D; Choi YS
    J Chem Inf Model; 2020 Aug; 60(8):3765-3769. PubMed ID: 32692561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of the Optimized Potentials for Liquid Simulations Force Field for Thermodynamics and Dynamics of Liquid Alkanes.
    Ghahremanpour MM; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2022 Aug; 126(31):5896-5907. PubMed ID: 35914179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach.
    Lansford JL; Barnes BC; Rice BM; Jensen KF
    J Chem Inf Model; 2022 Nov; 62(22):5397-5410. PubMed ID: 36240441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.
    Vysotsky YB; Fomina ES; Belyaeva EA; Fainerman VB; Vollhardt D
    Phys Chem Chem Phys; 2013 Feb; 15(6):2159-76. PubMed ID: 23292086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties.
    Deng D; Chen X; Zhang R; Lei Z; Wang X; Zhou F
    J Chem Inf Model; 2021 Jun; 61(6):2697-2705. PubMed ID: 34009965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data.
    Berger K; Caicedo JPR; Martino L; Wocher M; Hank T; Verrelst J
    Remote Sens (Basel); 2021 Jan; 13(2):287. PubMed ID: 36081683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals.
    Naef R; Acree WE
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28672839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures.
    Makrodimitri ZA; Unruh DJ; Economou IG
    Phys Chem Chem Phys; 2012 Mar; 14(12):4133-41. PubMed ID: 22354458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.