These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37857549)

  • 21. Three-Dimensional N-Doped Carbon Nanotube Frameworks on Ni Foam Derived from a Metal-Organic Framework as a Bifunctional Electrocatalyst for Overall Water Splitting.
    Yuan Q; Yu Y; Gong Y; Bi X
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3592-3602. PubMed ID: 31858792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PV-Electrolysis with STH 12.3.
    Baek M; Kim GW; Park T; Yong K
    Small; 2019 Dec; 15(49):e1905501. PubMed ID: 31682059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ni
    Bao J; Liu W; Xie J; Xu L; Guan M; Lei F; Zhao Y; Huang Y; Xia J; Li H
    Chem Asian J; 2019 Feb; 14(3):480-485. PubMed ID: 30600933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nickel-Based Selenides with a Fractal Structure as an Excellent Bifunctional Electrocatalyst for Water Splitting.
    He J; Qian T; Cai C; Xiang X; Li S; Zu X
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Innovative Way to Turn Catalyst into Substrate for Highly Efficient Water Splitting.
    Kim HR; Lee G; Nam GD; Kim D; Joo JH
    Small; 2021 Sep; 17(35):e2101571. PubMed ID: 34213823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Supported Cedarlike Semimetallic Cu3P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions.
    Hou CC; Chen QQ; Wang CJ; Liang F; Lin Z; Fu WF; Chen Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23037-48. PubMed ID: 27559613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductive N, S doped Copolymers as Stable Metal-Free Electrocatalysts for Water Splitting.
    Mathew S; Park KH; Han Y; Hui KN; Li OL; Cho YR
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46829-46839. PubMed ID: 37756659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review.
    Liu F; Shi C; Guo X; He Z; Pan L; Huang ZF; Zhang X; Zou JJ
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200307. PubMed ID: 35435329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Qin X; Ola O; Zhao J; Yang Z; Tiwari SK; Wang N; Zhu Y
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review.
    Muzammil A; Haider R; Wei W; Wan Y; Ishaq M; Zahid M; Yaseen W; Yuan X
    Mater Horiz; 2023 Jul; 10(8):2764-2799. PubMed ID: 37194395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoporous Sulfur-Doped Copper Oxide (Cu
    Zhang X; Cui X; Sun Y; Qi K; Jin Z; Wei S; Li W; Zhang L; Zheng W
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):745-752. PubMed ID: 29265797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid.
    She S; Zhu Y; Tahini HA; Wu X; Guan D; Chen Y; Dai J; Chen Y; Tang W; Smith SC; Wang H; Zhou W; Shao Z
    Small; 2020 Dec; 16(51):e2006800. PubMed ID: 33251694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of an Amethyst-like MoS
    Pei Z; Qin T; Tian R; Ou Y; Guo X
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Air-Stable Mn doped CuCl/CuO Hybrid Triquetrous Nanoarrays as Bifunctional Electrocatalysts for Overall Water Splitting.
    Chen Y; Cai Z; Wang D; Yan Y; Wang P; Wang X
    Chem Asian J; 2021 Oct; 16(20):3107-3113. PubMed ID: 34467668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the water splitting performance
    Niu J; Yang J; Channa AI; Ashalley E; Yang J; Jiang J; Li H; Ji H; Niu X
    RSC Adv; 2020 Jul; 10(45):27235-27241. PubMed ID: 35515797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review.
    Bodhankar PM; Sarawade PB; Kumar P; Vinu A; Kulkarni AP; Lokhande CD; Dhawale DS
    Small; 2022 May; 18(21):e2107572. PubMed ID: 35285140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An inclusive review and perspective on Cu-based materials for electrochemical water splitting.
    Sabir AS; Pervaiz E; Khosa R; Sohail U
    RSC Adv; 2023 Feb; 13(8):4963-4993. PubMed ID: 36793292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting.
    Hao J; Wu K; Lyu C; Yang Y; Wu H; Liu J; Liu N; Lau WM; Zheng J
    Mater Horiz; 2023 Jul; 10(7):2312-2342. PubMed ID: 37132292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.