BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37857619)

  • 1. Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library.
    Sun H; Wang Z; Shen L; Feng Y; Han L; Qian X; Meng R; Ji K; Liang D; Zhou F; Lou X; Zhang J; Shen B
    Nat Commun; 2023 Oct; 14(1):6625. PubMed ID: 37857619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
    Lee S; Lee H; Baek G; Kim JS
    Nat Biotechnol; 2023 Mar; 41(3):378-386. PubMed ID: 36229610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants.
    Zhang D; Pries V; Boch J
    BMC Biol; 2024 Apr; 22(1):99. PubMed ID: 38679734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing.
    Mi L; Shi M; Li YX; Xie G; Rao X; Wu D; Cheng A; Niu M; Xu F; Yu Y; Gao N; Wei W; Wang X; Wang Y
    Nat Commun; 2023 Feb; 14(1):874. PubMed ID: 36797253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
    Mok BY; Kotrys AV; Raguram A; Huang TP; Mootha VK; Liu DR
    Nat Biotechnol; 2022 Sep; 40(9):1378-1387. PubMed ID: 35379961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
    Cho SI; Lee S; Mok YG; Lim K; Lee J; Lee JM; Chung E; Kim JS
    Cell; 2022 May; 185(10):1764-1776.e12. PubMed ID: 35472302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility.
    Guo J; Yu W; Li M; Chen H; Liu J; Xue X; Lin J; Huang S; Shu W; Huang X; Liu Z; Wang S; Qiao Y
    Mol Cell; 2023 May; 83(10):1710-1724.e7. PubMed ID: 37141888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
    Willis JCW; Silva-Pinheiro P; Widdup L; Minczuk M; Liu DR
    Nat Commun; 2022 Nov; 13(1):7204. PubMed ID: 36418298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in mitochondrial DNA base editing technology.
    Song RJ; Han L; Sun HF; Shen B
    Yi Chuan; 2023 Aug; 45(8):632-642. PubMed ID: 37609815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial base editor induces substantial nuclear off-target mutations.
    Lei Z; Meng H; Liu L; Zhao H; Rao X; Yan Y; Wu H; Liu M; He A; Yi C
    Nature; 2022 Jun; 606(7915):804-811. PubMed ID: 35551512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced C-To-T and A-To-G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED.
    Wei Y; Jin M; Huang S; Yao F; Ren N; Xu K; Li S; Gao P; Zhou Y; Chen Y; Yang H; Li W; Xu C; Zhang M; Wang X
    Adv Sci (Weinh); 2024 Jan; 11(3):e2304113. PubMed ID: 37984866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering RsDddA as mitochondrial base editor with wide target compatibility and enhanced activity.
    Cheng K; Li C; Jin J; Qian X; Guo J; Shen L; Dai Y; Zhang X; Li Z; Guan Y; Zhou F; Tang J; Zhang J; Shen B; Lou X
    Mol Ther Nucleic Acids; 2023 Dec; 34():102028. PubMed ID: 37744175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base editing in human cells with monomeric DddA-TALE fusion deaminases.
    Mok YG; Lee JM; Chung E; Lee J; Lim K; Cho SI; Kim JS
    Nat Commun; 2022 Jul; 13(1):4038. PubMed ID: 35821233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases.
    Lee S; Lee H; Baek G; Namgung E; Park JM; Kim S; Hong S; Kim JS
    Genome Biol; 2022 Oct; 23(1):211. PubMed ID: 36224582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 17. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA.
    Cho SI; Lim K; Hong S; Lee J; Kim A; Lim CJ; Ryou S; Lee JM; Mok YG; Chung E; Kim S; Han S; Cho SM; Kim J; Kim EK; Nam KH; Oh Y; Choi M; An TH; Oh KJ; Lee S; Lee H; Kim JS
    Cell; 2024 Jan; 187(1):95-109.e26. PubMed ID: 38181745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases.
    Lee H; Lee S; Baek G; Kim A; Kang BC; Seo H; Kim JS
    Nat Commun; 2021 Feb; 12(1):1190. PubMed ID: 33608520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA.
    Yin L; Shi K; Aihara H
    Nat Struct Mol Biol; 2023 Aug; 30(8):1153-1159. PubMed ID: 37460895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends and prospects in mitochondrial genome editing.
    Phan HTL; Lee H; Kim K
    Exp Mol Med; 2023 May; 55(5):871-878. PubMed ID: 37121968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.