These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37857835)

  • 1. Rationalizing general limitations in assessing and comparing methods for compound potency prediction.
    Janela T; Bajorath J
    Sci Rep; 2023 Oct; 13(1):17816. PubMed ID: 37857835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Predictions of Compound Potency with Original and Modified Activity Classes Reveal General Prediction Characteristics and Intrinsic Limitations of Conventional Benchmarking Calculations.
    Janela T; Bajorath J
    Pharmaceuticals (Basel); 2023 Apr; 16(4):. PubMed ID: 37111287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomy of Potency Predictions Focusing on Structural Analogues with Increasing Potency Differences Including Activity Cliffs.
    Janela T; Bajorath J
    J Chem Inf Model; 2023 Nov; 63(22):7032-7044. PubMed ID: 37943257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis.
    Balfer J; Bajorath J
    PLoS One; 2015; 10(3):e0119301. PubMed ID: 25742011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-learning for transformer-based prediction of potent compounds.
    Chen H; Bajorath J
    Sci Rep; 2023 Sep; 13(1):16145. PubMed ID: 37752164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity.
    Tamura S; Miyao T; Bajorath J
    J Cheminform; 2023 Jan; 15(1):4. PubMed ID: 36611204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between prediction accuracy and uncertainty in compound potency prediction using deep neural networks and control models.
    Roth JP; Bajorath J
    Sci Rep; 2024 Mar; 14(1):6536. PubMed ID: 38503823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2020 Oct; 34(10):1013-1026. PubMed ID: 32361862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets.
    Lamens A; Bajorath J
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds.
    Parrott N; Manevski N; Olivares-Morales A
    Mol Pharm; 2022 Nov; 19(11):3858-3868. PubMed ID: 36150125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.
    Miyao T; Funatsu K; Bajorath J
    J Chem Inf Model; 2019 Mar; 59(3):983-992. PubMed ID: 30547580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of skin sensitization potency using machine learning approaches.
    Zang Q; Paris M; Lehmann DM; Bell S; Kleinstreuer N; Allen D; Matheson J; Jacobs A; Casey W; Strickland J
    J Appl Toxicol; 2017 Jul; 37(7):792-805. PubMed ID: 28074598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable Machine Learning for Property Predictions in Compound Optimization.
    Rodríguez-Pérez R; Bajorath J
    J Med Chem; 2021 Dec; 64(24):17744-17752. PubMed ID: 34902252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions.
    Rath EM; Tessier D; Campbell AA; Lee HC; Werner T; Salam NK; Lee LK; Church WB
    BMC Bioinformatics; 2013 Mar; 14():111. PubMed ID: 23530628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning approaches and their applications in drug discovery and design.
    Priya S; Tripathi G; Singh DB; Jain P; Kumar A
    Chem Biol Drug Des; 2022 Jul; 100(1):136-153. PubMed ID: 35426249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to approach machine learning-based prediction of drug/compound-target interactions.
    Atas Guvenilir H; Doğan T
    J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.