BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37858004)

  • 1. Detecting heterogeneity in the causal direction of dependence: A model-based recursive partitioning approach.
    Wiedermann W; Zhang B; Shi D
    Behav Res Methods; 2024 Apr; 56(4):2711-2730. PubMed ID: 37858004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Causality in linear nongaussian acyclic models in the presence of latent gaussian confounders.
    Chen Z; Chan L
    Neural Comput; 2013 Jun; 25(6):1605-41. PubMed ID: 23517099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data.
    Yang J; Dahabreh IJ; Steingrimsson JA
    Biometrics; 2022 Jun; 78(2):624-635. PubMed ID: 33527341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a model-based recursive partitioning algorithm to predict crash frequency.
    Tang H; Donnell ET
    Accid Anal Prev; 2019 Nov; 132():105274. PubMed ID: 31446099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Assumptions of Direction Dependence Analysis.
    Thoemmes F
    Multivariate Behav Res; 2020; 55(4):516-522. PubMed ID: 31215241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariate selection in causal learning under non-Gaussianity.
    Zhang B; Wiedermann W
    Behav Res Methods; 2024 Apr; 56(4):4019-4037. PubMed ID: 37704788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal evidence in health decision making: methodological approaches of causal inference and health decision science.
    Kühne F; Schomaker M; Stojkov I; Jahn B; Conrads-Frank A; Siebert S; Sroczynski G; Puntscher S; Schmid D; Schnell-Inderst P; Siebert U
    Ger Med Sci; 2022; 20():Doc12. PubMed ID: 36742460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional Direction Dependence Analysis: Evaluating the Causal Direction of Effects in Linear Models with Interaction Terms.
    Li X; Wiedermann W
    Multivariate Behav Res; 2020; 55(5):786-810. PubMed ID: 31713434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity Analysis and Extensions of Testing the Causal Direction of Dependence: A Rejoinder to Thoemmes (2019).
    Wiedermann W; Sebastian J
    Multivariate Behav Res; 2020; 55(4):523-530. PubMed ID: 31542955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOM: Fourth-order moment based causal direction identification on the heteroscedastic data.
    Cai R; Ye J; Qiao J; Fu H; Hao Z
    Neural Netw; 2020 Apr; 124():193-201. PubMed ID: 32018157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal discoveries for high dimensional mixed data.
    Cai Z; Xi D; Zhu X; Li R
    Stat Med; 2022 Oct; 41(24):4924-4940. PubMed ID: 35968913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal Discovery Combining K2 with Brain Storm Optimization Algorithm.
    Hong Y; Hao Z; Mai G; Huang H; Kumar Sangaiah A
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30012940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing dynamic spectral causality by lagged adaptive directed transfer function and instantaneous effect factor.
    Xu H; Lu Y; Zhu S; He B
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1979-88. PubMed ID: 24956616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the Causal Direction of Mediation Effects in Randomized Intervention Studies.
    Wiedermann W; Li X; von Eye A
    Prev Sci; 2019 Apr; 20(3):419-430. PubMed ID: 29781050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited review: Recursive models in animal breeding: Interpretation, limitations, and extensions.
    Varona L; González-Recio O
    J Dairy Sci; 2023 Apr; 106(4):2198-2212. PubMed ID: 36870846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Statistical Methods for Causal Inference in Prevention Science: Introduction to the Special Section.
    Wiedermann W; Dong N; von Eye A
    Prev Sci; 2019 Apr; 20(3):390-393. PubMed ID: 30645732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individualized causal discovery with latent trajectory embedded Bayesian networks.
    Zhou F; He K; Ni Y
    Biometrics; 2023 Dec; 79(4):3191-3202. PubMed ID: 36807295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Efficient Entropy-Based Causal Discovery Method for Linear Structural Equation Models With IID Noise Variables.
    Xie F; Cai R; Zeng Y; Gao J; Hao Z
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1667-1680. PubMed ID: 31283513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causal discovery using compression-complexity measures.
    Sy P; Nagaraj N
    J Biomed Inform; 2021 May; 117():103724. PubMed ID: 33722730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random forest methodology for model-based recursive partitioning: the mobForest package for R.
    Garge NR; Bobashev G; Eggleston B
    BMC Bioinformatics; 2013 Apr; 14():125. PubMed ID: 23577585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.