These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37858463)

  • 1. Active maintenance of CD8
    Russ BE; Barugahare A; Dakle P; Tsyganov K; Quon S; Yu B; Li J; Lee JKC; Olshansky M; He Z; Harrison PF; See M; Nussing S; Morey AE; Udupa VA; Bennett TJ; Kallies A; Murre C; Collas P; Powell D; Goldrath AW; Turner SJ
    Cell Rep; 2023 Oct; 42(10):113301. PubMed ID: 37858463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active maintenance of CD8
    Russ BE; Tsyganov K; Quon S; Yu B; Li J; Lee JKC; Olshansky M; He Z; Harrison PF; Barugahare A; See M; Nussing S; Morey AE; Udupa VA; Bennett TJ; Kallies A; Murre C; Collas P; Powell D; Goldrath AW; Turner SJ
    bioRxiv; 2023 Feb; ():. PubMed ID: 36909629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SATB1 ensures appropriate transcriptional programs within naïve CD8
    Nüssing S; Miosge LA; Lee K; Olshansky M; Barugahare A; Roots CM; Sontani Y; Day EB; Koutsakos M; Kedzierska K; Goodnow CC; Russ BE; Daley SR; Turner SJ
    Immunol Cell Biol; 2022 Sep; 100(8):636-652. PubMed ID: 35713361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Running to Stand Still: Naive CD8
    Bennett TJ; Udupa VAV; Turner SJ
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8
    Quon S; Yu B; Russ BE; Tsyganov K; Nguyen H; Toma C; Heeg M; Hocker JD; Milner JJ; Crotty S; Pipkin ME; Turner SJ; Goldrath AW
    Immunity; 2023 May; 56(5):959-978.e10. PubMed ID: 37040762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling.
    Billingsley JM; Rajakumar PA; Connole MA; Salisch NC; Adnan S; Kuzmichev YV; Hong HS; Reeves RK; Kang HJ; Li W; Li Q; Haase AT; Johnson RP
    PLoS Pathog; 2015 Mar; 11(3):e1004740. PubMed ID: 25768938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and flexibility in chromatin structure and transcription underlies memory CD8 T-cell differentiation.
    Diao H; Pipkin M
    F1000Res; 2019; 8():. PubMed ID: 31448086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation.
    Rutishauser RL; Kaech SM
    Immunol Rev; 2010 May; 235(1):219-33. PubMed ID: 20536566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status.
    Zediak VP; Johnnidis JB; Wherry EJ; Berger SL
    J Immunol; 2011 Mar; 186(5):2705-9. PubMed ID: 21278341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutting Edge: Chromatin Accessibility Programs CD8 T Cell Memory.
    Scharer CD; Bally AP; Gandham B; Boss JM
    J Immunol; 2017 Mar; 198(6):2238-2243. PubMed ID: 28179496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B).
    Araki Y; Fann M; Wersto R; Weng NP
    J Immunol; 2008 Jun; 180(12):8102-8. PubMed ID: 18523274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runx proteins and transcriptional mechanisms that govern memory CD8 T cell development.
    Pipkin ME
    Immunol Rev; 2021 Mar; 300(1):100-124. PubMed ID: 33682165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8
    Gray SM; Amezquita RA; Guan T; Kleinstein SH; Kaech SM
    Immunity; 2017 Apr; 46(4):596-608. PubMed ID: 28410989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD8
    Turner SJ; Bennett TJ; La Gruta NL
    Cold Spring Harb Perspect Biol; 2021 May; 13(5):. PubMed ID: 33648987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages.
    Baumann FM; Yuzefpolskiy Y; Sarkar S; Kalia V
    PLoS One; 2016; 11(9):e0162674. PubMed ID: 27627450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor regulation of CD8+ T-cell memory and exhaustion.
    Angelosanto JM; Wherry EJ
    Immunol Rev; 2010 Jul; 236():167-75. PubMed ID: 20636816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation.
    Gray SM; Kaech SM; Staron MM
    Immunol Rev; 2014 Sep; 261(1):157-68. PubMed ID: 25123283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E2A-regulated epigenetic landscape promotes memory CD8 T cell differentiation.
    Schauder DM; Shen J; Chen Y; Kasmani MY; Kudek MR; Burns R; Cui W
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33859041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.
    Abdelsamed HA; Moustaki A; Fan Y; Dogra P; Ghoneim HE; Zebley CC; Triplett BM; Sekaly RP; Youngblood B
    J Exp Med; 2017 Jun; 214(6):1593-1606. PubMed ID: 28490440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses.
    Kallies A; Xin A; Belz GT; Nutt SL
    Immunity; 2009 Aug; 31(2):283-95. PubMed ID: 19664942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.