These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Portable smartphone platform integrated with paper strip-assisted fluorescence sensor for ultrasensitive and visual quantitation of ascorbic acid. Li C; Xu X; Wang F; Zhao Y; Shi Y; Zhao X; Liu J Food Chem; 2023 Feb; 402():134222. PubMed ID: 36130432 [TBL] [Abstract][Full Text] [Related]
23. Ratiometric fluorescent sensing system for drug residue analysis: Highly sensitive immunosensor using dual-emission quantum dots hybrid and compact smartphone based-device. Yu W; Jiang C; Xie B; Wang S; Yu X; Wen K; Lin J; Wang J; Wang Z; Shen J Anal Chim Acta; 2020 Mar; 1102():91-98. PubMed ID: 32044000 [TBL] [Abstract][Full Text] [Related]
29. Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Yuan M; Li C; Wang M; Cao H; Ye T; Hao L; Wu X; Yin F; Yu J; Xu F Mikrochim Acta; 2023 Mar; 190(3):109. PubMed ID: 36867213 [TBL] [Abstract][Full Text] [Related]
30. 3D-Printed, Portable, Fluorescent-Sensing Platform for Smartphone-Capable Detection of Organophosphorus Residue Using Reaction-Based Aggregation Induced Emission Luminogens. Jiao Z; Guo Z; Huang X; Yang J; Huang J; Liu Y; Liu G; Zhang P; Song C; Tang BZ ACS Sens; 2021 Aug; 6(8):2845-2850. PubMed ID: 34406746 [TBL] [Abstract][Full Text] [Related]
31. A portable fluorescence detection device based on a smartphone employing carbon nanodots for Mn Mool-Am-Kha P; Phetduang S; Ngamdee K; Surawanitkun C; Ren XK; Ngeontae W Anal Methods; 2024 Apr; 16(14):2101-2110. PubMed ID: 38512109 [TBL] [Abstract][Full Text] [Related]
32. High sensitivity deep-UV LED-based z-cell photometric detector for capillary liquid chromatography. Li Y; Nesterenko PN; Stanley R; Paull B; Macka M Anal Chim Acta; 2018 Nov; 1032():197-202. PubMed ID: 30143218 [TBL] [Abstract][Full Text] [Related]
33. Aptamer-Based Fluorescent Sensor Array for Multiplexed Detection of Cyanotoxins on a Smartphone. Li Z; Zhang S; Yu T; Dai Z; Wei Q Anal Chem; 2019 Aug; 91(16):10448-10457. PubMed ID: 31192585 [TBL] [Abstract][Full Text] [Related]
34. A Smartphone-Based Sensing System for On-Site Quantitation of Multiple Heavy Metal Ions Using Fluorescent Carbon Nanodots-Based Microarrays. Xiao M; Liu Z; Xu N; Jiang L; Yang M; Yi C ACS Sens; 2020 Mar; 5(3):870-878. PubMed ID: 32141287 [TBL] [Abstract][Full Text] [Related]
35. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Wang Y; Zeinhom MMA; Yang M; Sun R; Wang S; Smith JN; Timchalk C; Li L; Lin Y; Du D Anal Chem; 2017 Sep; 89(17):9339-9346. PubMed ID: 28727917 [TBL] [Abstract][Full Text] [Related]
36. Droplet-based immunoassay on a 'sticky' nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Nicolini AM; Fronczek CF; Yoon JY Biosens Bioelectron; 2015 May; 67():560-9. PubMed ID: 25283449 [TBL] [Abstract][Full Text] [Related]
37. Sensitive and High-Throughput Time-Resolved Luminescence Detection of Tetracycline in Milk for Eliminating Background Fluorescence on a Miniaturized Apparatus. Luo J; Zhu Z Anal Chem; 2024 Jul; 96(28):11115-11120. PubMed ID: 38949267 [TBL] [Abstract][Full Text] [Related]
38. Multifunction fluorescence open source in vivo/in vitro imaging system (openIVIS). Branning JM; Faughnan KA; Tomson AA; Bell GJ; Isbell SM; DeGroot A; Jameson L; Kilroy K; Smith M; Smith R; Mottel L; Branning EG; Worrall Z; Anderson F; Panditaradyula A; Yang W; Abdelmalek J; Brake J; Cash KJ PLoS One; 2024; 19(3):e0299875. PubMed ID: 38498588 [TBL] [Abstract][Full Text] [Related]