BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37858556)

  • 1. Establishment and optimization of the three-band fluorometric indices for oil species identification: Implications on the optimal excitation wavelengths and the detection band combinations.
    Xie M; Xu Q; Xie L; Li Y; Han B
    Anal Chim Acta; 2023 Nov; 1280():341871. PubMed ID: 37858556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Analysis on the Optimal Excitation Wavelength for Fine-Grained Identification of Refined Oil Pollutants on Water Surface Based on Laser-Induced Fluorescence.
    Xie M; Jia Y; Li Y; Cai X; Cao K
    J Fluoresc; 2022 Jan; 32(1):257-265. PubMed ID: 34767127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil species identification based on fluorescence excitation-emission matrix and transformer-based deep learning.
    Xie M; Xie L; Li Y; Han B
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123059. PubMed ID: 37390715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep or Shallow? A Comparative Analysis on the Oil Species Identification Based on Excitation-Emission Matrix and Multiple Machine Learning Algorithms.
    Xie M; Xu Q; Li Y
    J Fluoresc; 2023 Nov; ():. PubMed ID: 37962766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Excitation Light for Accurate Rapid Bacterial Species Identification with Autofluorescence.
    Mito D; Eda H; Okihara SI; Kurita M; Hatayama N; Yoshino Y; Watanabe Y; Ishii K
    J Fluoresc; 2023 Aug; ():. PubMed ID: 37597134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil pollutant identification based on excitation-emission matrix of UV-induced fluorescence and deep convolutional neural network.
    Li Y; Jia Y; Cai X; Xie M; Zhang Z
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):68152-68160. PubMed ID: 35534705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation emission matrix fluorescence spectroscopy and parallel factor framework-clustering analysis for oil pollutants identification.
    Cui Y; Kong D; Kong L; Wang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119586. PubMed ID: 33626421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorometric Detection of Oil Traces in a Sea Water Column.
    Baszanowska E; Otremba Z
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Photon Fluorescence Study of Olive Oils at Different Excitation Wavelengths.
    Xu J; Zhong X; Sun M; Chen Q; Zeng Z; Chen Y; Cheng K
    J Fluoresc; 2021 Mar; 31(2):609-617. PubMed ID: 33528737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical degradation of oil products in seawater monitored by 3D excitation emission matrix (EEM) fluorescence spectroscopy: implications for coloured dissolved organic matter (CDOM) studies.
    de Bruyn W; Chang D; Bui T; Hok S; Clark C
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34777-34787. PubMed ID: 30324377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy.
    Heintzelman DL; Utzinger U; Fuchs H; Zuluaga A; Gossage K; Gillenwater AM; Jacob R; Kemp B; Richards-Kortum RR
    Photochem Photobiol; 2000 Jul; 72(1):103-13. PubMed ID: 10911734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of the development of laser fluorosensors for oil spill application.
    Brown CE; Fingas MF
    Mar Pollut Bull; 2003; 47(9-12):477-84. PubMed ID: 12899891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of characteristic wavelengths using SMA for laser induced fluorescence spectroscopy of power transformer oil.
    Hu F; Hu J; Dai R; Guan Y; Shen X; Gao B; Wang K; Liu Y; Yao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122140. PubMed ID: 36450191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral oil emulsion species and concentration prediction using multi-output neural network based on fluorescence spectra in the solar-blind UV band.
    Gong B; Mao S; Li X; Chen B
    Anal Methods; 2024 Mar; 16(13):1836-1845. PubMed ID: 38470293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis.
    Christensen JH; Hansen AB; Mortensen J; Andersen O
    Anal Chem; 2005 Apr; 77(7):2210-7. PubMed ID: 15801755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal fluorescence excitation wavelengths for detection of squamous intra-epithelial neoplasia: results from an animal model.
    Coghlan L; Utzinger U; Drezek R; Heintzelmann D; Zuluaga A; Brookner C; Richards-Kortum R; Gimenez-Conti I; Follen M
    Opt Express; 2000 Dec; 7(12):436-46. PubMed ID: 19407895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples.
    Palmer GM; Marshek CL; Vrotsos KM; Ramanujam N
    Lasers Surg Med; 2002; 30(3):191-200. PubMed ID: 11891738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the overall quality of olive oil using fluorescence spectroscopy.
    Guzmán E; Baeten V; Pierna JA; García-Mesa JA
    Food Chem; 2015 Apr; 173():927-34. PubMed ID: 25466108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths.
    Farsund O; Rustad G; Skogan G
    Biomed Opt Express; 2012 Nov; 3(11):2964-75. PubMed ID: 23162732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.