These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37858642)
1. Biocompatible and antibacterial poly(lactic acid)/cellulose nanofiber‑silver nanoparticle biocomposites prepared via Pickering emulsion method. Wu CN; Wang TE; Hsieh CC; Cheng KC; Wu KC Int J Biol Macromol; 2023 Dec; 253(Pt 8):127495. PubMed ID: 37858642 [TBL] [Abstract][Full Text] [Related]
2. Cellulose acetate nanofibers embedded with AgNPs anchored TiO Jatoi AW; Kim IS; Ni QQ Carbohydr Polym; 2019 Mar; 207():640-649. PubMed ID: 30600049 [TBL] [Abstract][Full Text] [Related]
3. TEMPO-Oxidized Bacterial Cellulose Pellicle with Silver Nanoparticles for Wound Dressing. Wu CN; Fuh SC; Lin SP; Lin YY; Chen HY; Liu JM; Cheng KC Biomacromolecules; 2018 Feb; 19(2):544-554. PubMed ID: 29334612 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of poly (styrene-acrylate)/silver nanoparticle-graphene oxide composite antibacterial by in situ Pickering emulsion polymerization. Liao W; Huang X; Zhong G; Ye L; Zheng S J Mech Behav Biomed Mater; 2023 Aug; 144():105877. PubMed ID: 37399763 [TBL] [Abstract][Full Text] [Related]
5. Conductive and antibacterial films by loading reduced graphene oxide/silver nanoparticles on cellulose nanofiber films. Hua Y; Liu C; Tang Y Int J Biol Macromol; 2023 Jul; 242(Pt 1):124752. PubMed ID: 37156316 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial polylactic acid fabricated via Pickering emulsion approach with polyethyleneimine and polydopamine modified cellulose nanocrystals as emulsion stabilizers. Zhang Z; Zhong M; Xiang H; Ding Y; Wang Y; Shi Y; Yang G; Tang B; Tam KC; Zhou G Int J Biol Macromol; 2023 Dec; 253(Pt 5):127263. PubMed ID: 37802443 [TBL] [Abstract][Full Text] [Related]
7. Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties. Jatoi AW; Kim IS; Ogasawara H; Ni QQ Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110077. PubMed ID: 31546450 [TBL] [Abstract][Full Text] [Related]
8. Dialdehyde Cellulose Solution as Reducing Agent: Preparation of Uniform Silver Nanoparticles and In Situ Synthesis of Antibacterial Composite Films with High Barrier Properties. Zeng J; Xiong X; Hu F; Li J; Li P Molecules; 2023 Mar; 28(7):. PubMed ID: 37049719 [TBL] [Abstract][Full Text] [Related]
9. Konjac glucomannan-based highly antibacterial active films loaded with thyme essential oil through bacterial cellulose nanofibers/Ag nanoparticles stabilized Pickering emulsions. Zhou S; Peng H; Zhao A; Yang X; Lin D Int J Biol Macromol; 2024 Jun; 269(Pt 1):131875. PubMed ID: 38677701 [TBL] [Abstract][Full Text] [Related]
10. Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity. Huang M; Chen F; Jiang Z; Li Y Int J Biol Macromol; 2013 Nov; 62():608-13. PubMed ID: 24141071 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Jatoi AW; Kim IS; Ni QQ Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1179-1195. PubMed ID: 30813001 [TBL] [Abstract][Full Text] [Related]
12. Effect of TEMPO-oxidized bacterial cellulose nanofibers stabilized Pickering emulsion of cinnamon essential oil on structure and properties of gelatin composite films. Li D; Li EJ; Li L; Li B; Jia S; Xie Y; Zhong C Int J Biol Macromol; 2024 Apr; 264(Pt 1):130344. PubMed ID: 38401581 [TBL] [Abstract][Full Text] [Related]
13. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. Spagnol C; Fragal EH; Pereira AGB; Nakamura CV; Muniz EC; Follmann HDM; Silva R; Rubira AF J Colloid Interface Sci; 2018 Dec; 531():705-715. PubMed ID: 30077948 [TBL] [Abstract][Full Text] [Related]
14. Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Bakhsheshi-Rad HR; Ismail AF; Aziz M; Akbari M; Hadisi Z; Khoshnava SM; Pagan E; Chen X Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110812. PubMed ID: 32279830 [TBL] [Abstract][Full Text] [Related]
15. In situ assembly of well-dispersed Ag nanoparticles on the surface of polylactic acid-Au@polydopamine nanofibers for antimicrobial applications. Zhang Q; Wang Y; Zhang W; Hickey ME; Lin Z; Tu Q; Wang J Colloids Surf B Biointerfaces; 2019 Dec; 184():110506. PubMed ID: 31541892 [TBL] [Abstract][Full Text] [Related]
16. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications. Jatoi AW; Ogasawara H; Kim IS; Ni QQ Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107 [TBL] [Abstract][Full Text] [Related]
17. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Fortunati E; Rinaldi S; Peltzer M; Bloise N; Visai L; Armentano I; Jiménez A; Latterini L; Kenny JM Carbohydr Polym; 2014 Jan; 101():1122-33. PubMed ID: 24299883 [TBL] [Abstract][Full Text] [Related]
18. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application. Zeng A; Yang R; Tong Y; Zhao W Int J Biol Macromol; 2023 Apr; 235():123739. PubMed ID: 36806768 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of cellulose/silver nanocomposite fibers. Li R; He M; Li T; Zhang L Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895 [TBL] [Abstract][Full Text] [Related]
20. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization. Ko SW; Lee JY; Rezk AI; Park CH; Kim CS Carbohydr Polym; 2021 Oct; 269():118255. PubMed ID: 34294292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]