BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37858828)

  • 1. Magnetically recyclable Cu
    Gao X; Feng W; Zhang H; Weng N; Huo S
    Sci Total Environ; 2024 Jan; 907():167903. PubMed ID: 37858828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Cu
    Gao X; Feng W; Zhang J; Zhang H; Huo S
    Environ Pollut; 2023 Oct; 334():122186. PubMed ID: 37442327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of harmful cyanobacteria Microcystis aeruginosa by Cu
    Gao X; Zhang H; Zhang J; Weng N; Huo S
    Bioresour Technol; 2024 Feb; 394():130259. PubMed ID: 38151210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetically separable ZnFe
    Fan G; Lin X; You Y; Du B; Li X; Luo J
    J Hazard Mater; 2022 Jan; 421():126703. PubMed ID: 34315026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Needle" hidden in silk floss: Inactivation effect and mechanism of melamine sponge loaded bismuth oxide composite copper-metal organic framework (MS/Bi
    Wang M; Chen J; Wei Y; Hu L; Xu Y; Liu Y; Wang R
    J Hazard Mater; 2024 Mar; 465():133273. PubMed ID: 38113729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress of Microcystis aeruginosa induced by algicidal bacterium Stenotrophomonas sp. KT48.
    Lyu P; Li H; Zheng X; Zhang H; Wang C; Qin Y; Xia B; Wang D; Xu S; Zhuang X
    Appl Microbiol Biotechnol; 2022 Jun; 106(11):4329-4340. PubMed ID: 35604440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic Zn-doped Fe
    Qi J; Lan H; Liu R; Liu H; Qu J
    Water Res; 2020 Mar; 171():115448. PubMed ID: 31901509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress.
    Liu Y; Yang M; Zheng L; Nguyen H; Ni L; Song S; Sui Y
    Sci Total Environ; 2020 Nov; 743():140754. PubMed ID: 32758840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist.
    Chen Q; Wang L; Qi Y; Ma C
    Chemosphere; 2020 Nov; 259():127430. PubMed ID: 32593822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH.
    Liu Y; Li L; Zheng L; Fu P; Wang Y; Nguyen H; Shen X; Sui Y
    Chemosphere; 2020 Mar; 243():125241. PubMed ID: 31995860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa.
    Hong Y; Hu HY; Xie X; Sakoda A; Sagehashi M; Li FM
    Aquat Toxicol; 2009 Feb; 91(3):262-9. PubMed ID: 19131120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa).
    Wang B; Li Y; Zheng J; Hu Y; Wang X; Hu B
    Chemosphere; 2020 Sep; 254():126898. PubMed ID: 32957293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome.
    Zhang S; Benoit G
    Aquat Toxicol; 2019 Oct; 215():105271. PubMed ID: 31470337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.
    Li J; Liu Y; Zhang P; Zeng G; Cai X; Liu S; Yin Y; Hu X; Hu X; Tan X
    J Environ Sci (China); 2016 May; 43():40-47. PubMed ID: 27155407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
    Yang M; Wang X
    Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation.
    Ren L; Wang P; Wang C; Paerl HW; Wang H
    Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: Impacts on cell integrity, pigment contents and microcystins degradation.
    Zhang H; Yang L; Yu Z; Huang Q
    J Hazard Mater; 2014 Mar; 268():33-42. PubMed ID: 24468526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed cell death process in freshwater Microcystis aeruginosa and marine Phaeocystis globosa induced by a plant derived allelochemical.
    Xu C; Yu S; Hu J; Effiong K; Ge Z; Tang T; Xiao X
    Sci Total Environ; 2022 Sep; 838(Pt 2):156055. PubMed ID: 35598674
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang J; Li W; Wu X
    RSC Adv; 2021 Jul; 11(40):24985-24990. PubMed ID: 35481007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The growth inhibitory effects and non-targeted metabolomic profiling of Microcystis aeruginosa treated by Scenedesmus sp.
    Zhang XL; Zhu QQ; Chen CY; Xie B; Tang BG; Fan MH; Hu QJ; Liao Z; Yan XJ
    Chemosphere; 2023 Oct; 338():139446. PubMed ID: 37423414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.