BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37858852)

  • 1. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LUNAR :Drug Screening for Novel Coronavirus Based on Representation Learning Graph Convolutional Network.
    Zhou D; Peng S; Wei DQ; Zhong W; Dou Y; Xie X
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1290-1298. PubMed ID: 34081583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network.
    Tang R; Sun C; Huang J; Li M; Wei J; Liu J
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5675-5684. PubMed ID: 37672364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrative Heterogeneous Graph Neural Network-Based Method for Multi-Labeled Drug Repurposing.
    Sadeghi S; Lu J; Ngom A
    Front Pharmacol; 2022; 13():908549. PubMed ID: 35873597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational approach to drug repurposing using graph neural networks.
    Doshi S; Chepuri SP
    Comput Biol Med; 2022 Nov; 150():105992. PubMed ID: 36228466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction.
    Zhang ML; Zhao BW; Su XR; He YZ; Yang Y; Hu L
    BMC Bioinformatics; 2022 Dec; 23(1):516. PubMed ID: 36456957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction.
    Xuan P; Meng X; Gao L; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35393616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases.
    Xuan P; Lu Z; Zhang T; Liu Y; Nakaguchi T
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks.
    Nam Y; Lucas A; Yun JS; Lee SM; Park JW; Chen Z; Lee B; Ning X; Shen L; Verma A; Kim D
    J Transl Med; 2023 Jun; 21(1):415. PubMed ID: 37365631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.