These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37858993)

  • 1. Near- and far-field study of polarization-dependent surface plasmon resonance in bowtie nano-aperture arrays.
    Choi S; Park J; Chew SH; Khurelbaatar T; Gliserin A; Kim S; Kim DE
    Opt Express; 2023 Sep; 31(20):31760-31767. PubMed ID: 37858993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant Effects in Nanoscale Bowtie Apertures.
    Ding L; Qin J; Guo S; Liu T; Kinzel E; Wang L
    Sci Rep; 2016 Jun; 6():27254. PubMed ID: 27250995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.
    Kinzel EC; Xu X
    Opt Express; 2009 May; 17(10):8036-45. PubMed ID: 19434135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of near-field linear nano-polarizer by asymmetric nanoaperture and bowtie nanoantenna.
    Li J; Chen S; Yu P; Cheng H; Duan X; Tian J
    Opt Express; 2013 Apr; 21(8):10342-50. PubMed ID: 23609744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence.
    Verhagen E; Kuipers L; Polman A
    Opt Express; 2009 Aug; 17(17):14586-98. PubMed ID: 19687938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary bowtie aperture for localizing and enhancing optical magnetic field.
    Zhou N; Kinzel EC; Xu X
    Opt Lett; 2011 Aug; 36(15):2764-6. PubMed ID: 21808305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.
    Chen Y; Chen J; Xu X; Chu J
    Opt Express; 2015 Apr; 23(7):9093-9. PubMed ID: 25968743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics.
    Rao Z; Hesselink L; Harris JS
    Opt Lett; 2007 Jul; 32(14):1995-7. PubMed ID: 17632621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays.
    Mrejen M; Israel A; Taha H; Palchan M; Lewis A
    Opt Express; 2007 Jul; 15(15):9129-38. PubMed ID: 19547253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures.
    Thompson PG; Biris CG; Osley EJ; Gaathon O; Osgood RM; Panoiu NC; Warburton PA
    Opt Express; 2011 Dec; 19(25):25035-47. PubMed ID: 22273895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bowtie nano-aperture as interface between near-fields and a single-mode fiber.
    Mivelle M; Ibrahim IA; Baida F; Burr GW; Nedeljkovic D; Charraut D; Rauch JY; Salut R; Grosjean T
    Opt Express; 2010 Jul; 18(15):15964-74. PubMed ID: 20720980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.
    Lee CH; Liao SC; Lin TR; Wang SH; Lai DY; Chiu PK; Lee JW; Wu WF
    Opt Express; 2016 Aug; 24(16):17541-52. PubMed ID: 27505725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.
    Wen X; Datta A; Traverso LM; Pan L; Xu X; Moon EE
    Sci Rep; 2015 Nov; 5():16192. PubMed ID: 26525906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 40  nm thick photoresist-compatible plasmonic nanolithography using a bowtie aperture combined with a metal-insulator-metal structure.
    Jiang Z; Luo H; Guo S; Wang L
    Opt Lett; 2019 Feb; 44(4):783-786. PubMed ID: 30767986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel optical nanolithography using nanoscale bowtie aperture array.
    Uppuluri SM; Kinzel EC; Li Y; Xu X
    Opt Express; 2010 Mar; 18(7):7369-75. PubMed ID: 20389758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of three-dimensional field distribution of bowtie aperture using quasi-spherical waves and surface plasmon polaritons.
    Park C; Jung H; Hahn JW
    Sci Rep; 2017 Mar; 7():45352. PubMed ID: 28358013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.