These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37859023)

  • 1. Super-resolution imaging method assisted by a left-handed medium slab based on a neural network.
    Zhang Q; Yin C; Li A
    Opt Express; 2023 Sep; 31(20):32134-32151. PubMed ID: 37859023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limitation of FDTD in simulation of a perfect lens imaging system.
    Chen JJ; Grzegorczyk TM; Wu BI; Kong JA
    Opt Express; 2005 Dec; 13(26):10840-5. PubMed ID: 19503302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Left-handed materials do not make a perfect lens.
    Garcia N; Nieto-Vesperinas M
    Phys Rev Lett; 2002 May; 88(20):207403. PubMed ID: 12005605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic finite-difference time-domain analysis of high-speed moving metamaterials.
    Zhao Y; Chaimool S
    Sci Rep; 2018 May; 8(1):7686. PubMed ID: 29769588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic waves focused by a negative-index planar lens.
    Loschialpo PF; Smith DL; Forester DW; Rachford FJ; Schelleng J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025602. PubMed ID: 12636738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-field optical storage system using a solid immersion lens with a left-handed material slab.
    Liu L; He S
    Opt Express; 2004 Oct; 12(20):4835-40. PubMed ID: 19484036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial.
    Hu Y; Wen S; Zhuo H; You K; Fan D
    Opt Express; 2008 Mar; 16(7):4774-84. PubMed ID: 18542576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.
    Qiu D; Zhang S; Liu Y; Zhu J; Zheng L
    Comput Methods Programs Biomed; 2020 Apr; 187():105059. PubMed ID: 31582263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.
    Ning L; Setsompop K; Michailovich O; Makris N; Shenton ME; Westin CF; Rathi Y
    Neuroimage; 2016 Jan; 125():386-400. PubMed ID: 26505296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-size effects of a left-handed material slab on the image quality.
    Chen L; He S; Shen L
    Phys Rev Lett; 2004 Mar; 92(10):107404. PubMed ID: 15089243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image Super-Resolution Reconstruction Method for Lung Cancer CT-Scanned Images Based on Neural Network.
    Xu J; Liu W; Qin Y; Xu G
    Biomed Res Int; 2022; 2022():3543531. PubMed ID: 35898680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved generative adversarial network for retinal image super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 Oct; 225():106995. PubMed ID: 35970055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic equivalent model for phase conjugate mirror based on the utilization of left-handed material.
    Zheng G; Ran L; Yang C
    Opt Express; 2007 Oct; 15(21):13877-85. PubMed ID: 19550659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure for localizing electromagnetic waves with a left-handed-medium slab and a conducting plane.
    Cheng Q; Cui TJ
    Opt Lett; 2005 May; 30(10):1216-8. PubMed ID: 15943314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater Object Detection and Reconstruction Based on Active Single-Pixel Imaging and Super-Resolution Convolutional Neural Network.
    Li M; Mathai A; Lau SLH; Yam JW; Xu X; Wang X
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33466530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Blind Super-Resolution Technology for Infrared Images of Power Equipment Based on Compressed Sensing Theory.
    Wang Y; Wang L; Liu B; Zhao H
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-sighted superlens.
    Podolskiy VA; Narimanov EE
    Opt Lett; 2005 Jan; 30(1):75-7. PubMed ID: 15648643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image Super-Resolution Based on Structure-Modulated Sparse Representation.
    Zhang Y; Liu J; Yang W; Guo Z
    IEEE Trans Image Process; 2015 Sep; 24(9):2797-810. PubMed ID: 25966473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting Raw Images for Real-Scene Super-Resolution.
    Xu X; Ma Y; Sun W; Yang MH
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1905-1921. PubMed ID: 33079657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.