These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37859024)

  • 1. THz time-domain spectroscopy modulated with semiconductor plasmonic perfect absorbers.
    Gonzalez-Posada F; Coquillat D; Najem M; Cerutti L; Taliercio T
    Opt Express; 2023 Sep; 31(20):32152-32161. PubMed ID: 37859024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
    Liu H; Luo K; Tang S; Peng D; Hu F; Tu L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing.
    Wang Y; Zhu D; Cui Z; Hou L; Lin L; Qu F; Liu X; Nie P
    ACS Omega; 2019 Nov; 4(20):18645-18652. PubMed ID: 31737824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure.
    Peng Y; Zang X; Zhu Y; Shi C; Chen L; Cai B; Zhuang S
    Opt Express; 2015 Feb; 23(3):2032-9. PubMed ID: 25836074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Charlot B; Bomers M; Neubrech F; Tournie E; Taliercio T
    Opt Express; 2017 Oct; 25(22):26651-26661. PubMed ID: 29092159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation, fabrication and characterization of THz metamaterial absorbers.
    Grant JP; McCrindle IJ; Cumming DR
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-Effective Bull's Eye Aperture-Style Multi-Band Metamaterial Absorber at Sub-THz Band: Design, Numerical Analysis, and Physical Interpretation.
    Vafapour Z
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow-petal graphene metasurface for broadband tunable THz absorption.
    Wu S; Li JS
    Appl Opt; 2019 Apr; 58(11):3023-3028. PubMed ID: 31044907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix.
    Taliercio T; Guilengui VN; Cerutti L; Rodriguez JB; Barho F; Rodrigo MJ; Gonzalez-Posada F; Tournié E; Niehle M; Trampert A
    Opt Express; 2015 Nov; 23(23):29423-33. PubMed ID: 26698426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Terahertz Devices and Sensors Based on Carbon Electronics.
    Xu W; Fang W; Shi T; Ming X; Wang Y; Xie L; Peng L; Chen HT; Ying Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12560-12569. PubMed ID: 36847242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces.
    Huang J; Li J; Yang Y; Li J; Li J; Zhang Y; Yao J
    Opt Express; 2020 Jun; 28(12):17832-17840. PubMed ID: 32679986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective terahertz absorber for angle and polarization-independent spectral sensing.
    Arose C; Terracciano AC; Peale RE; Vasu SS
    Opt Lett; 2022 Mar; 47(6):1514-1516. PubMed ID: 35290352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Terahertz Radiation by Surface Plasmons Based on CdTe Thin Films.
    Kong H; Huang L; Li M; Zhang L; Zeng H
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metasurface Terahertz Perfect Absorber with Strong Multi-Frequency Selectivity.
    Zhou Q; Ma W; Wu T; Li Y; Qiu Q; Duan J; Li J; Jiang L; Zhou W; Gao Y; Huang J; Huang Z
    ACS Omega; 2022 Oct; 7(41):36712-36727. PubMed ID: 36278078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy.
    Ho IC; Guo X; Zhang XC
    Opt Express; 2010 Feb; 18(3):2872-83. PubMed ID: 20174116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure.
    Sun Y; Shi Y; Liu X; Song J; Li M; Wang X; Yang F
    Nanoscale Adv; 2021 Jul; 3(14):4072-4078. PubMed ID: 36132834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of Carbaryl in Rice by Using FT Far-IR and THz-TDS Techniques].
    Sun T; Zhang ZY; Xiang YH; Zhu RH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):541-4. PubMed ID: 27209765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.