BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37859035)

  • 1. Efficiently scanning a focus behind scattering media beyond memory effect by wavefront tilting and re-optimization.
    Wang X; Zhao W; Zhai A; Wang D
    Opt Express; 2023 Sep; 31(20):32287-32297. PubMed ID: 37859035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast 3D movement of a laser focusing spot behind scattering media by utilizing optical memory effect and optical conjugate planes.
    Tran V; Sahoo SK; Dang C
    Sci Rep; 2019 Dec; 9(1):19507. PubMed ID: 31862990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning a focus through scattering media without using the optical memory effect.
    Mastiani B; Ohn TL; Vellekoop IM
    Opt Lett; 2019 Nov; 44(21):5226-5229. PubMed ID: 31674974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the spectral memory effect of scattering media.
    Zhang R; Du J; He Y; Yuan D; Luo J; Wu D; Ye B; Luo ZC; Shen Y
    Opt Express; 2021 Aug; 29(17):26944-26954. PubMed ID: 34615118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing Coherent Light through Volume Scattering Phantoms via Wavefront Shaping.
    Fritzsche N; Ott F; Pink K; Kienle A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping.
    Ruan H; Haber T; Liu Y; Brake J; Kim J; Berlin JM; Yang C
    Optica; 2017 Nov; 4(11):1337-1343. PubMed ID: 29623290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical information transmission through complex scattering media with optical-channel-based intensity streaming.
    Ruan H; Xu J; Yang C
    Nat Commun; 2021 Apr; 12(1):2411. PubMed ID: 33893304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media.
    Zhao T; Ourselin S; Vercauteren T; Xia W
    Opt Lett; 2021 Mar; 46(5):1165-1168. PubMed ID: 33649683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of focusing through scattering media using the continuous sequential algorithm.
    Thompson JV; Hokr BH; Yakovlev VV
    J Mod Opt; 2016; 63(1):80-84. PubMed ID: 27018179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonically encoded wavefront shaping for focusing into random media.
    Tay JW; Lai P; Suzuki Y; Wang LV
    Sci Rep; 2014 Jan; 4():3918. PubMed ID: 24472822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-acoustic resolution optical focusing through scattering using photoacoustic fluctuation guided wavefront shaping.
    Inzunza-Ibarra MA; Premillieu E; Grünsteidl C; Piestun R; Murray TW
    Opt Express; 2020 Mar; 28(7):9823-9832. PubMed ID: 32225582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guidestar-free image-guided wavefront shaping.
    Yeminy T; Katz O
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34138733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid wide-field imaging through scattering media by digital holographic wavefront correction.
    Li R; Peng T; Zhou M; Yu X; Gao P; Min J; Yang Y; Lei M; Yao B; Zhang C; Ye T
    Appl Opt; 2019 Apr; 58(11):2845-2853. PubMed ID: 31044887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.
    Feng BY; Guo H; Xie M; Boominathan V; Sharma MK; Veeraraghavan A; Metzler CA
    Sci Adv; 2023 Jun; 9(26):eadg4671. PubMed ID: 37379386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution photoacoustic imaging through a scattering wall.
    Conkey DB; Caravaca-Aguirre AM; Dove JD; Ju H; Murray TW; Piestun R
    Nat Commun; 2015 Aug; 6():7902. PubMed ID: 26249833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed feedback based wavefront shaping for spatiotemporal enhancement of incoherent light through dynamic scattering media.
    Hsieh CM; Malik MOA; Liu Q
    Opt Lett; 2023 May; 48(9):2313-2316. PubMed ID: 37126262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
    Yu Z; Li H; Zhong T; Park JH; Cheng S; Woo CM; Zhao Q; Yao J; Zhou Y; Huang X; Pang W; Yoon H; Shen Y; Liu H; Zheng Y; Park Y; Wang LV; Lai P
    Innovation (Camb); 2022 Sep; 3(5):100292. PubMed ID: 36032195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective optimization genetic algorithm for multi-point light focusing in wavefront shaping.
    Feng Q; Yang F; Xu X; Zhang B; Ding Y; Liu Q
    Opt Express; 2019 Dec; 27(25):36459-36473. PubMed ID: 31873425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focusing on moving targets through scattering samples.
    Zhou EH; Ruan H; Yang C; Judkewitz B
    Optica; 2014; 1(4):227-232. PubMed ID: 25621302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.