BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37859069)

  • 1. Neural network approach for correction of multiple scattering errors in the LISST-VSF instrument.
    Ugulen HS; Koestner D; Sandven H; Hamre B; Kristoffersen AS; Saetre C
    Opt Express; 2023 Sep; 31(20):32737-32751. PubMed ID: 37859069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of the LISST-VSF to derive the volume scattering functions in clear waters.
    Hu L; Zhang X; Xiong Y; He MX
    Opt Express; 2019 Aug; 27(16):A1188-A1206. PubMed ID: 31510499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of multiple scattering errors in LISST-VSF volume scattering function measurements using Monte Carlo simulations and experimental data.
    Ugulen HS; Sandven H; Hamre B; Kristoffersen AS; Sætre C
    Opt Express; 2021 Apr; 29(8):12413-12428. PubMed ID: 33985001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ measurements of the volume scattering function with LISST-VSF and LISST-200X in extreme environments: evaluation of instrument calibration and validity.
    Sandven H; Kristoffersen AS; Chen YC; Hamre B
    Opt Express; 2020 Dec; 28(25):37373-37396. PubMed ID: 33379574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibrated near-forward volume scattering function obtained from the LISST particle sizer.
    Slade WH; Boss ES
    Opt Express; 2006 Apr; 14(8):3602-15. PubMed ID: 19516507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Monte Carlo simulation reveals significant multiple scattering errors in underwater angular scattering measurements.
    Ugulen HS; Sandven H; Hamre B; Kristoffersen AS; Sætre C
    Opt Express; 2022 Mar; 30(7):10802-10817. PubMed ID: 35473039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance.
    Chami M; McKee D; Leymarie E; Khomenko G
    Appl Opt; 2006 Dec; 45(36):9210-20. PubMed ID: 17151762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles.
    Zhang X; Gray DJ; Huot Y; You Y; Bi L
    Appl Opt; 2012 Jul; 51(21):5085-99. PubMed ID: 22858949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols.
    Harmel T; Hieronymi M; Slade W; Röttgers R; Roullier F; Chami M
    Opt Express; 2016 Jan; 24(2):A234-56. PubMed ID: 26832578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-examining the effect of particle phase functions on the remote-sensing reflectance.
    Xiong Y; Zhang X; He S; Gray DJ
    Appl Opt; 2017 Aug; 56(24):6881-6888. PubMed ID: 29048028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irradiance inversion theory to retrieve volume scattering function of seawater.
    Hirata T
    Appl Opt; 2003 Mar; 42(9):1564-73. PubMed ID: 12665087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An instrument for in situ measuring the volume scattering function of water: design, calibration and primary experiments.
    Li C; Cao W; Yu J; Ke T; Lu G; Yang Y; Guo C
    Sensors (Basel); 2012; 12(4):4514-33. PubMed ID: 22666043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrument for in situ synchronous measurement of the multi-angle volume scattering function and attenuation coefficient.
    Liu C; Li C; Zhao W; Chen F; Yang Z; Zhang X; Zhang Y; Zhou W; Cao W; Yu L; Xing H
    Opt Express; 2023 Jan; 31(1):248-264. PubMed ID: 36606964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instruments and methods for measuring the backward-scattering coefficient of ocean waters.
    Maffione RA; Dana DR
    Appl Opt; 1997 Aug; 36(24):6057-67. PubMed ID: 18259450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption coefficient instrument for turbid natural waters.
    Friedman E; Poole L; Cherdak A; Houghton W
    Appl Opt; 1980 May; 19(10):1688-93. PubMed ID: 20221099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to measure the volume scattering function.
    Tan H; Doerffer R; Oishi T; Tanaka A
    Opt Express; 2013 Aug; 21(16):18697-711. PubMed ID: 23938786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of volume scattering phase functions.
    Tuchow N; Broughton J; Kudela R
    Opt Express; 2016 Aug; 24(16):18559-70. PubMed ID: 27505819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angular shape of the oceanic particulate volume scattering function in the backward direction.
    Sullivan JM; Twardowski MS
    Appl Opt; 2009 Dec; 48(35):6811-9. PubMed ID: 20011022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties associated to measurements of inherent optical properties in natural waters.
    Leymarie E; Doxaran D; Babin M
    Appl Opt; 2010 Oct; 49(28):5415-36. PubMed ID: 20885480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9.
    Stockley ND; Röttgers R; McKee D; Lefering I; Sullivan JM; Twardowski MS
    Opt Express; 2017 Nov; 25(24):A1139-A1153. PubMed ID: 29220991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.