These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37859074)

  • 1. Hybrid waveguide based augmented reality display system with extra large field of view and 2D exit pupil expansion.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2023 Sep; 31(20):32799-32812. PubMed ID: 37859074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics.
    Liu Z; Pang Y; Pan C; Huang Z
    Opt Express; 2017 Nov; 25(24):30720-30731. PubMed ID: 29221099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metagrating meets the geometry-based efficiency limit for AR waveguide in-couplers.
    Goodsell J; Xiong P; Nikolov DK; Vamivakas AN; Rolland JP
    Opt Express; 2023 Jan; 31(3):4599-4614. PubMed ID: 36785423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable pupil expansion propagation using orthogonal superposition varied-line-spacing H-PDLC gratings in a holographic waveguide system.
    Shen T; Cai Z; Liu Y; Zheng J
    Appl Opt; 2019 Aug; 58(24):6622-6628. PubMed ID: 31503594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of two compact waveguide display systems utilizing metasurface gratings as couplers.
    Afra T; Salehi MR; Abiri E
    Appl Opt; 2021 Oct; 60(28):8756-8765. PubMed ID: 34613101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holographic waveguide head-up display with 2-D pupil expansion and longitudinal image magnification.
    Draper CT; Bigler CM; Mann MS; Sarma K; Blanche PA
    Appl Opt; 2019 Feb; 58(5):A251-A257. PubMed ID: 30873984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular uniformity improvement of diffractive waveguide display based on region geometry optimization.
    Li Z; Gao C; Li H; Wu R; Liu X
    Appl Opt; 2024 Apr; 63(10):2494-2502. PubMed ID: 38568528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion.
    Bigler CM; Mann MS; Blanche PA
    Appl Opt; 2019 Dec; 58(34):G326-G331. PubMed ID: 31873517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion.
    Ni D; Cheng D; Wang Y; Yang T; Wang X; Chi C; Wang Y
    Opt Express; 2023 Mar; 31(7):11019-11040. PubMed ID: 37155747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact pupil-expansion AR-HUD based on surface-relief grating.
    Dai G; Yang H; Yin L; Ren K; Liu J; Zhang X; Zhang J
    Opt Express; 2024 Feb; 32(5):6917-6928. PubMed ID: 38439386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of waveguide with double layer diffractive optical elements for augmented reality displays.
    Zhang J; Liu S; Zhang W; Jiang S; Ma D; Xu L; Yang M; Jiao Q; Tan X
    Sci Rep; 2024 Oct; 14(1):24310. PubMed ID: 39415000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enlarged Eye-Box Accommodation-Capable Augmented Reality with Hologram Replicas.
    Moon W; Hahn J
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensated DOE in a VHG-based waveguide display to improve uniformity.
    Guo M; Guo Y; Cai J; Wang Z; Lv G; Feng Q
    Opt Express; 2024 May; 32(10):18017-18032. PubMed ID: 38858968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pupil replication waveguide system for autostereoscopic imaging with a wide field of view.
    Yanusik I; Kalinina A; Morozov A; Lee JH
    Opt Express; 2021 Oct; 29(22):36287-36301. PubMed ID: 34809043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.