These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37859152)

  • 1. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
    Cheng D; Wang Y; Xu C; Song W; Jin G
    Opt Express; 2014 Aug; 22(17):20705-19. PubMed ID: 25321274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion.
    Ni D; Cheng D; Wang Y; Yang T; Wang X; Chi C; Wang Y
    Opt Express; 2023 Mar; 31(7):11019-11040. PubMed ID: 37155747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a two-dimensional stray-light-free geometrical waveguide head-up display.
    Gu L; Cheng D; Wang Q; Hou Q; Wang Y
    Appl Opt; 2018 Nov; 57(31):9246-9256. PubMed ID: 30461965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization.
    Ni D; Cheng D; Liu Y; Wang X; Yao C; Yang T; Chi C; Wang Y
    Opt Express; 2022 Jul; 30(14):24523-24543. PubMed ID: 36237005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stray light and tolerance analysis of an ultrathin waveguide display.
    Wang Q; Cheng D; Hou Q; Hu Y; Wang Y
    Appl Opt; 2015 Oct; 54(28):8354-62. PubMed ID: 26479609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid waveguide based augmented reality display system with extra large field of view and 2D exit pupil expansion.
    Wu Y; Pan C; Lu C; Zhang Y; Zhang L; Huang Z
    Opt Express; 2023 Sep; 31(20):32799-32812. PubMed ID: 37859074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a large field-of-view see-through near to eye display with two geometrical waveguides.
    Yang J; Twardowski P; Gérard P; Fontaine J
    Opt Lett; 2016 Dec; 41(23):5426-5429. PubMed ID: 27906204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating.
    Weng Y; Zhang Y; Wang W; Gu Y; Wang C; Wei R; Zhang L; Wang B
    Opt Express; 2023 Feb; 31(4):6601-6614. PubMed ID: 36823912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator.
    Gu L; Cheng D; Wang Q; Hou Q; Wang S; Yang T; Wang Y
    Opt Express; 2019 Apr; 27(9):12692-12709. PubMed ID: 31052807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector.
    Zhang Q; Piao Y; Ma S; Liu Y; Wang Y; Song W
    Opt Express; 2022 Aug; 30(18):33208-33221. PubMed ID: 36242366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel ultra-thin near-eye augmented-view device (UNAD).
    Zhu Y; Chang J; Niu YJ; Chen WL; Du XY
    Opt Express; 2016 Jan; 24(2):1305-13. PubMed ID: 26832511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stray light analysis and suppression method of a pancake virtual reality head-mounted display.
    Hou Q; Cheng D; Li Y; Zhang T; Li D; Huang Y; Chen H; Wang Q; Hou W; Yang T; Wang Y
    Opt Express; 2022 Dec; 30(25):44918-44932. PubMed ID: 36522905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographically customized optical combiner for eye-box extended near-eye display.
    Jeong J; Lee J; Yoo C; Moon S; Lee B; Lee B
    Opt Express; 2019 Dec; 27(26):38006-38018. PubMed ID: 31878572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic near-eye display based on complex amplitude modulation with band-limited zone plates.
    Chen Y; Hua M; Zhang T; Zhou M; Wu J; Zou W
    Opt Express; 2021 Jul; 29(14):22749-22760. PubMed ID: 34266031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics.
    Liu Z; Pang Y; Pan C; Huang Z
    Opt Express; 2017 Nov; 25(24):30720-30731. PubMed ID: 29221099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.