These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37859195)

  • 1. Soft x-ray Ar 
    Fekete B; Kiss M; Shapolov AA; Szatmari S; Kukhlevsky SV
    Opt Express; 2023 Oct; 31(21):34381-34390. PubMed ID: 37859195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operation and output pulse characteristics of an extremely compact capillary-discharge tabletop soft-x-ray laser.
    Benware BR; Moreno CH; Burd DJ; Rocca JJ
    Opt Lett; 1997 Jun; 22(11):796-8. PubMed ID: 18185665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a desk-top size high repetition rate soft x-ray laser.
    Heinbuch S; Grisham M; Martz D; Rocca JJ
    Opt Express; 2005 May; 13(11):4050-5. PubMed ID: 19495315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of discharge currents on the intensity of 46.9 nm capillary discharge soft X-ray laser.
    Khan MU; Zhao Y; Hui T; Shahzad MK; Cui H; Zhao D
    Opt Express; 2019 Jun; 27(12):16738-16750. PubMed ID: 31252895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.
    Framme C; Schuele G; Roider J; Kracht D; Birngruber R; Brinkmann R
    Ophthalmic Surg Lasers; 2002; 33(5):400-9. PubMed ID: 12358294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of millijoule-level soft-x-ray laser pulses at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier.
    Macchietto CD; Benware BR; Rocca JJ
    Opt Lett; 1999 Aug; 24(16):1115-7. PubMed ID: 18073957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a 10.3-microm pulsed DFB quantum cascade laser.
    Lytkine A; Manne J; Jäger W; Tulip J
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):947-51. PubMed ID: 16503190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact, low cost Marx bank for generating capillary discharge plasmas.
    Dyson AE; Thornton C; Hooker SM
    Rev Sci Instrum; 2016 Sep; 87(9):093302. PubMed ID: 27782608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high voltage pulsed power supply for capillary discharge waveguide applications.
    Abuazoum S; Wiggins SM; Issac RC; Welsh GH; Vieux G; Ganciu M; Jaroszynski DA
    Rev Sci Instrum; 2011 Jun; 82(6):063505. PubMed ID: 21721689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.
    Wyndham ES; Favre M; Valdivia MP; Valenzuela JC; Chuaqui H; Bhuyan H
    Rev Sci Instrum; 2010 Sep; 81(9):093502. PubMed ID: 20886977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cs-Ar optical amplifier with a saturation intensity of 10 kW-cm
    Park S; Mironov AE; Eden JG
    Opt Express; 2020 Apr; 28(9):14072-14084. PubMed ID: 32403869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma dynamics in capillary discharge soft x-ray lasers.
    Ben-Kish A; Shuker M; Nemirovsky RA; Fisher A; Ron A; Schwob JL
    Phys Rev Lett; 2001 Jul; 87(1):015002. PubMed ID: 11461470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power-density capillary discharge plasma columns for shorter wavelength discharge-pumped soft-x-ray lasers.
    Gonzalez JJ; Frati M; Rocca JJ; Shlyaptsev VN; Osterheld AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026404. PubMed ID: 11863665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of gain saturation and double-pass amplification of a 69.8  nm laser pumped by capillary discharge.
    Zhao Y; Liu T; Zhang W; Li W; Cui H
    Opt Lett; 2016 Aug; 41(16):3779-82. PubMed ID: 27519087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Emissions from Stretched Excitation Pulse in Nanosecond Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO
    Xiong G; Zhang Y; Schulz C; Tse SD
    Appl Spectrosc; 2022 May; 76(5):569-579. PubMed ID: 35081776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets.
    Müller M; Kühl FC; Großmann P; Vrba P; Mann K
    Opt Express; 2013 May; 21(10):12831-42. PubMed ID: 23736502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinally excited N(2) lasers without high-voltage switches.
    Uno K; Nakamura K; Goto T; Jitsuno T
    Rev Sci Instrum; 2008 Jun; 79(6):063107. PubMed ID: 18601397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses.
    Kantsyrev VL; Schultz KA; Shlyaptseva VV; Petrov GM; Safronova AS; Petkov EE; Moschella JJ; Shrestha I; Cline W; Wiewior P; Chalyy O
    Phys Rev E; 2016 Nov; 94(5-1):053203. PubMed ID: 27967059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturation of the Xe III 109-nm laser using traveling-wave laser-produced-plasma excitation.
    Sher MH; Macklin JJ; Young JF; Harris SE
    Opt Lett; 1987 Nov; 12(11):891-3. PubMed ID: 19741906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic-field distribution measurements in the soft x-ray range: full characterization of a soft x-ray laser beam.
    Le Pape S; Zeitoun P; Idir M; Dhez P; Rocca JJ; François M
    Phys Rev Lett; 2002 May; 88(18):183901. PubMed ID: 12005683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.