These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37859210)

  • 1. Compact high-resolution spectrometer based on super-prism and local-super-collimation effects of photonic crystal.
    Qi X; Chen J; Guan F; Shi L; Li Y; Liu Y; Xiong L; Lai Z; Wang X; Jiang X
    Opt Express; 2023 Oct; 31(21):34577-34588. PubMed ID: 37859210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam propagation in the photonic crystal of the local super-collimation regions.
    Liu J; Ru G; Jiang X
    Opt Express; 2019 Oct; 27(22):32823-32834. PubMed ID: 31684487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing applications.
    Jugessur A; Wu L; Bakhtazad A; Kirk A; Krauss T; De La Rue R
    Opt Express; 2006 Feb; 14(4):1632-42. PubMed ID: 19503491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyper collimation ability of two-dimensional photonic crystals.
    Ru G; Zheng Y; Liu J; Jiang X
    Opt Express; 2019 Apr; 27(9):11968-11978. PubMed ID: 31052743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband super-collimation in a hybrid photonic crystal structure.
    Hamam RE; Ibanescu M; Johnson SG; Joannopoulos JD; Soljacić M
    Opt Express; 2009 May; 17(10):8109-18. PubMed ID: 19434142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes.
    Jiang L; Wu H; Li X
    Appl Opt; 2013 Sep; 52(27):6676-84. PubMed ID: 24085166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband self-collimation in C2 symmetric photonic crystals.
    Gumus M; Giden IH; Kurt H
    Opt Lett; 2018 Jun; 43(11):2555-2558. PubMed ID: 29856428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal structures in titanium dioxide (TiO2) and their optimal design.
    Wang X; Fujimaki M; Awazu K
    Opt Express; 2005 Mar; 13(5):1486-97. PubMed ID: 19495024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-compact electro-optic modulator based on etchless lithium niobate photonic crystal nanobeam cavity.
    Zhang J; Pan B; Liu W; Dai D; Shi Y
    Opt Express; 2022 Jun; 30(12):20839-20846. PubMed ID: 36224819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal nanobeam biosensors based on porous silicon.
    Rodriguez GA; Markov P; Cartwright AP; Choudhury MH; Afzal FO; Cao T; Halimi SI; Retterer ST; Kravchenko II; Weiss SM
    Opt Express; 2019 Apr; 27(7):9536-9549. PubMed ID: 31045103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-collimating photonic crystal polarization beam splitter.
    Zabelin V; Dunbar LA; Le Thomas N; Houdré R; Kotlyar MV; O'Faolain L; Krauss TF
    Opt Lett; 2007 Mar; 32(5):530-2. PubMed ID: 17392911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Fabrication of a Visible-Light-Compatible, Polymer-Based Photonic Crystal Resonator and Waveguide for Sensing Applications.
    Sun J; Maeno K; Aki S; Sueyoshi K; Hisamoto H; Endo T
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic crystal negative refractive optics.
    Baba T; Abe H; Asatsuma T; Matsumoto T
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1473-81. PubMed ID: 20355537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism.
    Bernier D; Le Roux X; Lupu A; Marris-Morini D; Vivien L; Cassan E
    Opt Express; 2008 Oct; 16(22):17209-14. PubMed ID: 18958001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion engineering in unidirectional excitation of the surface wave of photonic crystal.
    Hu J; Tian S; Yang Y; Zhuang S; Guo H
    Opt Lett; 2018 Nov; 43(21):5319-5322. PubMed ID: 30382996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrometer based on a compact disordered multi-mode interferometer.
    Poudel A; Bhattarai P; Maharjan R; Coke M; Curry RJ; Crowe IF; Dhakal A
    Opt Express; 2023 Apr; 31(8):12624-12633. PubMed ID: 37157418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.
    Ooka Y; Tetsumoto T; Fushimi A; Yoshiki W; Tanabe T
    Sci Rep; 2015 Jun; 5():11312. PubMed ID: 26086849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution on-chip spectroscopy based on miniaturized microdonut resonators.
    Xia Z; Eftekhar AA; Soltani M; Momeni B; Li Q; Chamanzar M; Yegnanarayanan S; Adibi A
    Opt Express; 2011 Jun; 19(13):12356-64. PubMed ID: 21716473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution on-chip spatial heterodyne Fourier transform spectrometer based on artificial neural network and PCSBL reconstruction algorithm.
    Long X; Huang Z; Tian Y; Du J; Liu Y
    Opt Express; 2023 Sep; 31(20):33608-33621. PubMed ID: 37859138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.
    Asadi R; Ouyang Z; Mohammd MM
    Nanoscale; 2015 Jul; 7(26):11379-85. PubMed ID: 26074378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.