These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 37859272)
1. Curvature dependent onset of quantum tunneling in subnanometer gaps. Jalali M; Taro Svejda J; Jose J; Schlücker S; Erni D Opt Express; 2023 Oct; 31(21):35387-35395. PubMed ID: 37859272 [TBL] [Abstract][Full Text] [Related]
2. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres. Jose J; Schumacher L; Jalali M; Haberfehlner G; Svejda JT; Erni D; Schlücker S ACS Nano; 2022 Dec; 16(12):21377-21387. PubMed ID: 36475629 [TBL] [Abstract][Full Text] [Related]
3. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Hajisalem G; Nezami MS; Gordon R Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471 [TBL] [Abstract][Full Text] [Related]
4. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps. Takeuchi T; Yabana K Sci Rep; 2020 Dec; 10(1):21270. PubMed ID: 33277512 [TBL] [Abstract][Full Text] [Related]
5. Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range. Cha H; Yoon JH; Yoon S ACS Nano; 2014 Aug; 8(8):8554-63. PubMed ID: 25089844 [TBL] [Abstract][Full Text] [Related]
6. Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Zapata M; Camacho Beltrán ÁS; Borisov AG; Aizpurua J Opt Express; 2015 Mar; 23(6):8134-49. PubMed ID: 25837151 [TBL] [Abstract][Full Text] [Related]
7. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108 [TBL] [Abstract][Full Text] [Related]
8. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. Esteban R; Zugarramurdi A; Zhang P; Nordlander P; García-Vidal FJ; Borisov AG; Aizpurua J Faraday Discuss; 2015; 178():151-83. PubMed ID: 25739465 [TBL] [Abstract][Full Text] [Related]
10. Quantum optical response of metallic nanoparticles and dimers. Alcaraz de la Osa R; Sanz JM; Saiz JM; González F; Moreno F Opt Lett; 2012 Dec; 37(23):5015-7. PubMed ID: 23202122 [TBL] [Abstract][Full Text] [Related]
11. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime. Kim JY; Kang BJ; Park J; Bahk YM; Kim WT; Rhie J; Jeon H; Rotermund F; Kim DS Nano Lett; 2015 Oct; 15(10):6683-8. PubMed ID: 26372787 [TBL] [Abstract][Full Text] [Related]
12. Quantum tunneling effect on the surface enhanced Raman process in molecular systems. Ma W; Dai Q; Wei Y; Li L Opt Express; 2022 Feb; 30(4):4845-4855. PubMed ID: 35209457 [TBL] [Abstract][Full Text] [Related]
13. Transparent conductive films based on quantum tunneling. Wang D; Huang J; Lei Y; Fu W; Wang Y; Deng P; Cai H; Liu J Opt Express; 2019 May; 27(10):14344-14352. PubMed ID: 31163885 [TBL] [Abstract][Full Text] [Related]
14. Observation of quantum tunneling between two plasmonic nanoparticles. Scholl JA; García-Etxarri A; Koh AL; Dionne JA Nano Lett; 2013 Feb; 13(2):564-9. PubMed ID: 23245286 [TBL] [Abstract][Full Text] [Related]
15. Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. Wu L; Duan H; Bai P; Bosman M; Yang JK; Li E ACS Nano; 2013 Jan; 7(1):707-16. PubMed ID: 23215253 [TBL] [Abstract][Full Text] [Related]
16. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. Scholl JA; Garcia-Etxarri A; Aguirregabiria G; Esteban R; Narayan TC; Koh AL; Aizpurua J; Dionne JA ACS Nano; 2016 Jan; 10(1):1346-54. PubMed ID: 26639023 [TBL] [Abstract][Full Text] [Related]
17. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride. Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130 [TBL] [Abstract][Full Text] [Related]
18. Using the thickness of graphene to template lateral subnanometer gaps between gold nanostructures. Zaretski AV; Marin BC; Moetazedi H; Dill TJ; Jibril L; Kong C; Tao AR; Lipomi DJ Nano Lett; 2015 Jan; 15(1):635-40. PubMed ID: 25555061 [TBL] [Abstract][Full Text] [Related]
19. Microsphere Assisted Super-resolution Optical Imaging of Plasmonic Interaction between Gold Nanoparticles. Hou B; Xie M; He R; Ji M; Trummer S; Fink RH; Zhang L Sci Rep; 2017 Oct; 7(1):13789. PubMed ID: 29062012 [TBL] [Abstract][Full Text] [Related]
20. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces. Bauman SJ; Darweesh AA; Furr M; Magee M; Argyropoulos C; Herzog JB ACS Appl Mater Interfaces; 2022 Apr; 14(13):15541-15548. PubMed ID: 35344345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]