These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37859274)

  • 1. Gain optimization of an erbium-ytterbium co-doped amplifier via a Si
    Dong Z; Zhao Y; Wang Y; Wei W; Ding L; Tang L; Li Y
    Opt Express; 2023 Oct; 31(21):35419-35430. PubMed ID: 37859274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photonic integrated circuit-based erbium-doped amplifier.
    Liu Y; Qiu Z; Ji X; Lukashchuk A; He J; Riemensberger J; Hafermann M; Wang RN; Liu J; Ronning C; Kippenberg TJ
    Science; 2022 Jun; 376(6599):1309-1313. PubMed ID: 35709288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain.
    Zhang Z; Li S; Gao R; Zhang H; Lin J; Fang Z; Wu R; Wang M; Wang Z; Hang Y; Cheng Y
    Opt Lett; 2023 Aug; 48(16):4344-4347. PubMed ID: 37582028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching.
    Bonneville DB; Frankis HC; Wang R; Bradley JDB
    Opt Express; 2020 Sep; 28(20):30130-30140. PubMed ID: 33114897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strip loaded waveguide amplifiers based on erbium-doped nanocomposites with 17 dB internal net gain.
    Tao S; Song H; Zhao D; Yang Y; Wang S; Yan J; Wei J; Wang X; Qin G; Wang F; Zhang D
    Opt Express; 2024 Feb; 32(5):7931-7939. PubMed ID: 38439462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier.
    Zhou C; He X; Xiao M; Ma D; Chen W; Zhou Z
    Front Optoelectron; 2024 Jun; 17(1):16. PubMed ID: 38833110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain Enhancement of the Optical Waveguide Amplifier Based on NaYF
    Liu X; Zhang M; Hu G
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser.
    Zhou P; Wang S; Wang X; He Y; Zhou Z; Zhou L; Wu K
    Opt Express; 2018 Jun; 26(13):16689-16707. PubMed ID: 30119493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Chip Integrated Yb
    Zhang Z; Fang Z; Zhou J; Liang Y; Zhou Y; Wang Z; Liu J; Huang T; Bao R; Yu J; Zhang H; Wang M; Cheng Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers.
    Chen Z; Xu Q; Zhang K; Wong WH; Zhang DL; Pun EY; Wang C
    Opt Lett; 2021 Mar; 46(5):1161-1164. PubMed ID: 33649682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erbium-doped hybrid waveguide amplifiers with net optical gain on a fully industrial 300 mm silicon nitride photonic platform.
    Rönn J; Zhang J; Zhang W; Tu Z; Matikainen A; Leroux X; Durán-Valdeiglesias E; Vulliet N; Boeuf F; Alonso-Ramos C; Lipsanen H; Vivien L; Sun Z; Cassan E
    Opt Express; 2020 Sep; 28(19):27919-27926. PubMed ID: 32988074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of optical gain at 1550 nm in an Er
    Fan W; Zhang B; Wang C; Ying L; Yang X; Zhou Z; Zhang D
    Opt Express; 2021 Apr; 29(8):11372-11385. PubMed ID: 33984917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of optical gain at 1550 nm in erbium-ytterbium co-doped polymer waveguide amplifier.
    Chen C; Zhang D; Li T; Zhang D; Song L; Zhen Z
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1947-50. PubMed ID: 20355606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thulium-doped tellurium oxide waveguide amplifier with 7.6  dB net gain on a silicon nitride chip.
    Kiani KM; Frankis HC; Mbonde HM; Mateman R; Leinse A; Knights AP; Bradley JDB
    Opt Lett; 2019 Dec; 44(23):5788-5791. PubMed ID: 31774780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High on-chip gain spiral Al
    Bonneville DB; Osornio-Martinez CE; Dijkstra M; García-Blanco SM
    Opt Express; 2024 Apr; 32(9):15527-15536. PubMed ID: 38859200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting the Downconversion Luminescence of Tm
    Chen Y; Wei J; Zhang J; Qiu H; Zhang Y; Zhang J; Duan H; Zhan Q; Qin G; Wang F; Zheng K
    Nano Lett; 2024 Jan; 24(4):1399-1405. PubMed ID: 38252893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-gain polymer optical waveguide amplifiers based on core-shell NaYF
    Zhang M; Zhang W; Wang F; Zhao D; Qu C; Wang X; Yi Y; Cassan E; Zhang D
    Sci Rep; 2016 Nov; 6():36729. PubMed ID: 27827414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical model of an Er
    Nassiri A; Boulezhar A; Idrissi Saba H
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):C50-C56. PubMed ID: 33175731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm.
    Olausson CB; Shirakawa A; Chen M; Lyngsø JK; Broeng J; Hansen KP; Bjarklev A; Ueda K
    Opt Express; 2010 Aug; 18(16):16345-52. PubMed ID: 20721021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A photonic integrated continuous-travelling-wave parametric amplifier.
    Riemensberger J; Kuznetsov N; Liu J; He J; Wang RN; Kippenberg TJ
    Nature; 2022 Dec; 612(7938):56-61. PubMed ID: 36450905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.