These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37859523)

  • 1. A versatile and high-throughput flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization.
    Zou Z; Liang J; Jia Q; Bai D; Xie W; Wu W; Tan C; Ma J
    Nanoscale; 2023 Nov; 15(43):17443-17454. PubMed ID: 37859523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretching DNA to twice the normal length with single-molecule hydrodynamic trapping.
    Jiang Y; Feldman T; Bakx JAM; Yang D; Wong WP
    Lab Chip; 2020 May; 20(10):1780-1791. PubMed ID: 32301470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the force in flow-cell based single-molecule stretching experiments.
    Liang J; Li J; Zhong Z; Rujiralai T; Ma J
    Nanoscale; 2021 Oct; 13(37):15916-15927. PubMed ID: 34522927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining Single Molecular Forces Required for Notch Activation Using Nano Yoyo.
    Chowdhury F; Li IT; Ngo TT; Leslie BJ; Kim BC; Sokoloski JE; Weiland E; Wang X; Chemla YR; Lohman TM; Ha T
    Nano Lett; 2016 Jun; 16(6):3892-7. PubMed ID: 27167603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-Activated DNA Substrates for In Situ Generation of ssDNA and Designed ssDNA/dsDNA Structures in an Optical-Trapping Assay.
    Taylor AMK; Okoniewski SR; Uyetake L; Perkins TT
    Methods Mol Biol; 2022; 2478():273-312. PubMed ID: 36063324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast redistribution of E. coli SSB along long single-stranded DNA via intersegment transfer.
    Lee KS; Marciel AB; Kozlov AG; Schroeder CM; Lohman TM; Ha T
    J Mol Biol; 2014 Jun; 426(13):2413-21. PubMed ID: 24792418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA.
    Chen H; Fu H; Zhu X; Cong P; Nakamura F; Yan J
    Biophys J; 2011 Jan; 100(2):517-23. PubMed ID: 21244848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule analysis of SSB dynamics on single-stranded DNA.
    Zhou R; Ha T
    Methods Mol Biol; 2012; 922():85-100. PubMed ID: 22976178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy.
    Liu N; Bu T; Song Y; Zhang W; Li J; Zhang W; Shen J; Li H
    Langmuir; 2010 Jun; 26(12):9491-6. PubMed ID: 20178341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Local Molecular Tension Using Intercalated DNA Fluorescence.
    King GA; Biebricher AS; Heller I; Peterman EJG; Wuite GJL
    Nano Lett; 2018 Apr; 18(4):2274-2281. PubMed ID: 29473755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.
    Walder R; Van Patten WJ; Adhikari A; Perkins TT
    ACS Nano; 2018 Jan; 12(1):198-207. PubMed ID: 29244486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging.
    van Mameren J; Gross P; Farge G; Hooijman P; Modesti M; Falkenberg M; Wuite GJ; Peterman EJ
    Proc Natl Acad Sci U S A; 2009 Oct; 106(43):18231-6. PubMed ID: 19841258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved single molecule force spectroscopy using micromachined cantilevers.
    Bull MS; Sullan RM; Li H; Perkins TT
    ACS Nano; 2014 May; 8(5):4984-95. PubMed ID: 24670198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Mechanical and Fluorescence Detection of Helicase-Catalyzed DNA Unwinding.
    Bi L; Qin Z; Hou XM; Modesti M; Sun B
    Methods Mol Biol; 2022; 2478():329-347. PubMed ID: 36063326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSB functions as a sliding platform that migrates on DNA via reptation.
    Zhou R; Kozlov AG; Roy R; Zhang J; Korolev S; Lohman TM; Ha T
    Cell; 2011 Jul; 146(2):222-32. PubMed ID: 21784244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies.
    Le S; Yao M; Chen J; Efremov AK; Azimi S; Yan J
    Nucleic Acids Res; 2015 Sep; 43(17):e113. PubMed ID: 26007651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps.
    Wang J; Barnett JT; Pollard MR; Kad NM
    Methods Enzymol; 2017; 582():171-192. PubMed ID: 28062034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.