These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37859532)

  • 1. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities.
    Ahuja S; Zaheer S
    Cell Biol Int; 2024 Feb; 48(2):87-127. PubMed ID: 37859532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting TGF-β signal transduction for fibrosis and cancer therapy.
    Peng D; Fu M; Wang M; Wei Y; Wei X
    Mol Cancer; 2022 Apr; 21(1):104. PubMed ID: 35461253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Aberrant Activation Mechanism of TGF-β Signaling in Epithelial-mesenchymal Transition].
    Yuki R
    Yakugaku Zasshi; 2021; 141(11):1229-1234. PubMed ID: 34719542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway.
    Wang M; Chen DQ; Wang MC; Chen H; Chen L; Liu D; Zhao H; Zhao YY
    Phytomedicine; 2017 Dec; 36():243-253. PubMed ID: 29157821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biology of transforming growth factor-β signaling.
    Ikushima H; Miyazono K
    Curr Pharm Biotechnol; 2011 Dec; 12(12):2099-107. PubMed ID: 21619537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis.
    Xu F; Liu C; Zhou D; Zhang L
    J Histochem Cytochem; 2016 Mar; 64(3):157-67. PubMed ID: 26747705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes.
    Kong D; Zhang F; Shao J; Wu L; Zhang X; Chen L; Lu Y; Zheng S
    Lab Invest; 2015 Nov; 95(11):1234-45. PubMed ID: 26302188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1.
    Su J; Morgani SM; David CJ; Wang Q; Er EE; Huang YH; Basnet H; Zou Y; Shu W; Soni RK; Hendrickson RC; Hadjantonakis AK; Massagué J
    Nature; 2020 Jan; 577(7791):566-571. PubMed ID: 31915377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro.
    Yu Y; Hu D; Zhou Y; Xiang H; Liu B; Shen L; Long C; Liu X; Lin T; He D; Zhang Y; Xu T; Zhang D; Wei G
    Eur J Pharmacol; 2020 Sep; 883():173343. PubMed ID: 32629029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems.
    Andugulapati SB; Gourishetti K; Tirunavalli SK; Shaikh TB; Sistla R
    Phytomedicine; 2020 Nov; 78():153298. PubMed ID: 32781391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion.
    Shih JC; Lin HH; Hsiao AC; Su YT; Tsai S; Chien CL; Kung HN
    FASEB J; 2019 May; 33(5):6281-6295. PubMed ID: 30789794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation.
    Verrecchia F; Mauviel A
    J Invest Dermatol; 2002 Feb; 118(2):211-5. PubMed ID: 11841535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TGF-β signaling: critical nexus of fibrogenesis and cancer.
    Giarratana AO; Prendergast CM; Salvatore MM; Capaccione KM
    J Transl Med; 2024 Jun; 22(1):594. PubMed ID: 38926762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation.
    Lan HY
    Int J Biol Sci; 2011; 7(7):1056-67. PubMed ID: 21927575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smad phospho-isoforms direct context-dependent TGF-β signaling.
    Matsuzaki K
    Cytokine Growth Factor Rev; 2013 Aug; 24(4):385-99. PubMed ID: 23871609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-beta signaling: a tale of two responses.
    Rahimi RA; Leof EB
    J Cell Biochem; 2007 Oct; 102(3):593-608. PubMed ID: 17729308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis.
    Mallikarjuna P; Zhou Y; Landström M
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-302b mitigates renal fibrosis via inhibiting TGF-β/Smad pathway activation.
    Sun M; Zhou W; Yao F; Song J; Xu Y; Deng Z; Diao H; Li S
    Braz J Med Biol Res; 2021; 54(3):e9206. PubMed ID: 33503202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocrine transforming growth factor-β/activin A-Smad signaling induces hepatic progenitor cells undergoing partial epithelial-mesenchymal transition states.
    Wu Y; Ding ZY; Jin GN; Xiong YX; Yu B; Sun YM; Wang W; Liang HF; Zhang B; Chen XP
    Biochimie; 2018 May; 148():87-98. PubMed ID: 29544731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.