These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37859778)

  • 1. Investigation on the physical properties and biocompatibility of zirconia-alumina-silicate@diopside composite materials and its
    Rittidach T; Sillapaprayoon S; Chantho V; Pimtong W; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Bootchanont A; Porjai P; Pon-On W
    RSC Adv; 2023 Oct; 13(44):30575-30585. PubMed ID: 37859778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of zirconia-mullite incorporated biphasic calcium phosphate/biopolymer composite scaffolds for bone tissue engineering.
    Rittidach T; Tithito T; Suntornsaratoon P; Charoenphandhu N; Thongbunchoo J; Krishnamra N; Tang IM; Pon-On W
    Biomed Phys Eng Express; 2020 Jul; 6(5):055004. PubMed ID: 33444235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass.
    El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR
    Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances.
    He D; Zhuang C; Xu S; Ke X; Yang X; Zhang L; Yang G; Chen X; Mou X; Liu A; Gou Z
    Bioact Mater; 2016 Sep; 1(1):85-92. PubMed ID: 29744398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Biocompatibility, Osteogenic Activity, and Antibacterial Efficacy of Calcium Silicate-Zirconia Biocomposites.
    Ding SJ; Chu YH; Chen PT
    ACS Omega; 2021 Mar; 6(10):7106-7118. PubMed ID: 33748624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.
    Liu W; Zhai D; Huan Z; Wu C; Chang J
    Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Biomaterials Based on Biomimetic Trace Elements Co-Doped Hydroxyapatite: Physical, In Vitro Osteoblast-like Cell Growth and In Vivo Cytotoxicity in Zebrafish Studies.
    Tithito T; Sillapaprayoon S; Pimtong W; Thongbunchoo J; Charoenphandhu N; Krishnamra N; Lert-Itthiporn A; Maneeprakorn W; Pon-On W
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds.
    Shuai C; Guo W; Gao C; Yang Y; Xu Y; Liu L; Qin T; Sun H; Yang S; Feng P; Wu P
    Polymers (Basel); 2017 May; 9(5):. PubMed ID: 30970854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 3D printed Ca
    He F; Rao J; Zhou J; Fu W; Wang Y; Zhang Y; Zuo F; Shi H
    Colloids Surf B Biointerfaces; 2023 Sep; 229():113472. PubMed ID: 37487286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M; Bakhsheshi-Rad HR; Omidi M; Ismail AF; Aziz M; Berto F; Chen X
    Biomed Phys Eng Express; 2020 Mar; 6(3):035011. PubMed ID: 33438656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications.
    Sadeghzade S; Emadi R; Tavangarian F; Naderi M
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():431-438. PubMed ID: 27987728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of magnesium silicate on the mechanical properties, biocompatibility, bioactivity, degradability, and osteogenesis of poly(butylene succinate)-based composite scaffolds for bone repair.
    Wu Z; Zheng K; Zhang J; Tang T; Guo H; Boccaccini AR; Wei J
    J Mater Chem B; 2016 Dec; 4(48):7974-7988. PubMed ID: 32263787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration.
    Gaihre B; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():330-339. PubMed ID: 30033262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds.
    Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.