These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37860175)

  • 21. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N; Polavarapu L; Wang Q; Xu QH
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4844-50. PubMed ID: 25674821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molten-droplet synthesis of composite CdSe hollow nanoparticles.
    Gullapalli S; Grider JM; Bagaria HG; Lee KS; Cho M; Colvin VL; Jabbour GE; Wong MS
    Nanotechnology; 2012 Dec; 23(49):495605. PubMed ID: 23154269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology-Controlled Growth of Crystalline Ag-Pt-Alloyed Shells onto Au Nanotriangles and Their Plasmonic Properties.
    Xie X; van Huis MA; van Blaaderen A
    J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(32):16052-16060. PubMed ID: 37609379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings.
    Pajor-Świerzy A; Staśko D; Pawłowski R; Mordarski G; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.
    Ma Y; Li W; Cho EC; Li Z; Yu T; Zeng J; Xie Z; Xia Y
    ACS Nano; 2010 Nov; 4(11):6725-34. PubMed ID: 20964400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controllable Fabrication of Ag Nanoparticles-Coated Silica Core–Shell Microspheres and Its Optical Properties.
    Ma J; Zhao Q; Li Y; Bao J
    J Nanosci Nanotechnol; 2017 Jan; 17(1):474-81. PubMed ID: 29624326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of iron boride-silica core-shell nanoparticles with soft ferromagnetic properties.
    Saiyasombat C; Petchsang N; Tang IM; Hodak JH
    Nanotechnology; 2008 Feb; 19(8):085705. PubMed ID: 21730736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. When More Is Less: Plastic Weakening of Single Crystalline Ag Nanoparticles by the Polycrystalline Au Shell.
    Sharma A; Amodeo J; Gazit N; Qi Y; Thomas O; Rabkin E
    ACS Nano; 2021 Sep; 15(9):14061-14070. PubMed ID: 34379398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors.
    Dong P; Lin Y; Deng J; Di J
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2392-9. PubMed ID: 23477284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, transfer, and characterization of core-shell gold-coated magnetic nanoparticles.
    Smith M; McKeague M; DeRosa MC
    MethodsX; 2019; 6():333-354. PubMed ID: 30859070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization.
    Fratoddi I; Venditti I; Battocchio C; Polzonetti G; Cametti C; Russo MV
    Nanoscale Res Lett; 2011 Jan; 6(1):98. PubMed ID: 21711612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity.
    Liu X; Du J; Shao Y; Zhao SF; Yao KF
    Sci Rep; 2017 Aug; 7(1):10249. PubMed ID: 28860477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-Plasmonic Gold@Copper Sulfide Core-Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors.
    Sun M; Fu X; Chen K; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46146-46161. PubMed ID: 32955860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile synthesis of superparamagnetic Fe
    Bakr EA; El-Nahass MN; Hamada WM; Fayed TA
    RSC Adv; 2020 Dec; 11(2):781-797. PubMed ID: 35746920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.
    Aslam U; Linic S
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43127-43132. PubMed ID: 29165979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic-plasmonic core-shell nanoparticles.
    Levin CS; Hofmann C; Ali TA; Kelly AT; Morosan E; Nordlander P; Whitmire KH; Halas NJ
    ACS Nano; 2009 Jun; 3(6):1379-88. PubMed ID: 19441794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.