These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37860262)

  • 1. Bridging the gap: how to adopt opportunistic plant observations for phenology monitoring.
    Katal N; Rzanny M; Mäder P; Römermann C; Wittich HC; Boho D; Musavi T; Wäldchen J
    Front Plant Sci; 2023; 14():1150956. PubMed ID: 37860262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series.
    d'Andrimont R; Taymans M; Lemoine G; Ceglar A; Yordanov M; van der Velde M
    Remote Sens Environ; 2020 Mar; 239():111660. PubMed ID: 32184531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maps, trends, and temperature sensitivities-phenological information from and for decreasing numbers of volunteer observers.
    Yuan Y; Härer S; Ottenheym T; Misra G; Lüpke A; Estrella N; Menzel A
    Int J Biometeorol; 2021 Aug; 65(8):1377-1390. PubMed ID: 33694098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for broad-scale plant phenology assessments using citizen scientists' photographs.
    Barve VV; Brenskelle L; Li D; Stucky BJ; Barve NV; Hantak MM; McLean BS; Paluh DJ; Oswald JA; Belitz MW; Folk RA; Guralnick RP
    Appl Plant Sci; 2020 Jan; 8(1):e11315. PubMed ID: 31993257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits.
    Geissler C; Davidson A; Niesenbaum RA
    PeerJ; 2023; 11():e15188. PubMed ID: 37101791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How training citizen scientists affects the accuracy and precision of phenological data.
    Feldman RE; Žemaitė I; Miller-Rushing AJ
    Int J Biometeorol; 2018 Aug; 62(8):1421-1435. PubMed ID: 29732472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk.
    Park DS; Xie Y; Ellison AM; Lyra GM; Davis CC
    New Phytol; 2023 Sep; 239(6):2153-2165. PubMed ID: 36942966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature controls phenology in continuously flowering
    Daru BH; Kling MM; Meineke EK; van Wyk AE
    Appl Plant Sci; 2019 Mar; 7(3):e01232. PubMed ID: 30937224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in flowering phenology reshape a subalpine plant community.
    CaraDonna PJ; Iler AM; Inouye DW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4916-21. PubMed ID: 24639544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2.
    Meroni M; d'Andrimont R; Vrieling A; Fasbender D; Lemoine G; Rembold F; Seguini L; Verhegghen A
    Remote Sens Environ; 2021 Feb; 253():112232. PubMed ID: 33536689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications.
    Jones CA; Daehler CC
    PeerJ; 2018; 6():e4576. PubMed ID: 29632745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost observations and experiments return a high value in plant phenology research.
    McDonough MacKenzie C; Gallinat AS; Zipf L
    Appl Plant Sci; 2020 Apr; 8(4):e11338. PubMed ID: 32351799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration.
    Bloom TDS; O'Leary DS; Riginos C
    Ecol Appl; 2022 Sep; 32(6):e2583. PubMed ID: 35333428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altitudinal patterns of species richness and flowering phenology in herbaceous community in Qilian Mountains of China.
    Wang W; He Z; Du J; Ma D; Zhao P
    Int J Biometeorol; 2022 Apr; 66(4):741-751. PubMed ID: 35230530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.