BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37860749)

  • 1. Evaluation for Ion Heating of H2A-H2B Dimer in Ion Mobility Spectrometry-Mass Spectrometry.
    Saikusa K; Asakawa D; Fuchigami S; Akashi S
    Mass Spectrom (Tokyo); 2023; 12(1):A0131. PubMed ID: 37860749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric approach for characterizing the disordered tail regions of the histone H2A/H2B dimer.
    Saikusa K; Nagadoi A; Hara K; Fuchigami S; Kurumizaka H; Nishimura Y; Akashi S
    Anal Chem; 2015 Feb; 87(4):2220-7. PubMed ID: 25594579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum collision energies for proteomics: The impact of ion mobility separation.
    Nagy K; Gellén G; Papp D; Schlosser G; Révész Á
    J Mass Spectrom; 2023 Sep; 58(9):e4957. PubMed ID: 37415399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-neutralization effect of the tail regions on the histone H2A/H2B dimer structure.
    Saikusa K; Shimoyama S; Asano Y; Nagadoi A; Sato M; Kurumizaka H; Nishimura Y; Akashi S
    Protein Sci; 2015 Aug; 24(8):1224-31. PubMed ID: 25752661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion storage biases in the ion funnel trap of a Hybrid ion mobility spectrometer/time of flight mass spectrometer.
    Li J; Liu R; Gao W; Yu J; Tang K
    Talanta; 2023 Aug; 260():124621. PubMed ID: 37149942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase structure of the histone multimers characterized by ion mobility mass spectrometry and molecular dynamics simulation.
    Saikusa K; Fuchigami S; Takahashi K; Asano Y; Nagadoi A; Tachiwana H; Kurumizaka H; Ikeguchi M; Nishimura Y; Akashi S
    Anal Chem; 2013 Apr; 85(8):4165-71. PubMed ID: 23485128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deimination stabilizes histone H2A/H2B dimers as revealed by electrospray ionization mass spectrometry.
    Shimoyama S; Nagadoi A; Tachiwana H; Yamada M; Sato M; Kurumizaka H; Nishimura Y; Akashi S
    J Mass Spectrom; 2010 Aug; 45(8):900-8. PubMed ID: 20648673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New High Resolution Ion Mobility Mass Spectrometer Capable of Measurements of Collision Cross Sections from 150 to 520 K.
    Ujma J; Giles K; Morris M; Barran PE
    Anal Chem; 2016 Oct; 88(19):9469-9478. PubMed ID: 27573618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory.
    Dubland JA
    J Mass Spectrom Adv Clin Lab; 2022 Jan; 23():7-13. PubMed ID: 34988541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pentafluorobenzylpyridinium: new thermometer ion for characterizing the ions produced by collisional activation during tandem mass spectrometry.
    Asakawa D; Saikusa K
    Anal Sci; 2023 Dec; 39(12):2031-2039. PubMed ID: 37707776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collision Cross Sections of Phosphoric Acid Cluster Anions in Helium Measured by Drift Tube Ion Mobility Mass Spectrometry.
    Calabrese V; Lavanant H; Rosu F; Gabelica V; Afonso C
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):969-981. PubMed ID: 32153193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Applications of ion mobility-mass spectrometry in the chemical analysis in traditional Chinese medicines].
    Zhai R; Gao W; Li M; Yang H
    Se Pu; 2022 Sep; 40(9):782-787. PubMed ID: 36156624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.
    Kozole J; Levine LA; Tomlinson-Phillips J; Stairs JR
    Talanta; 2015 Aug; 140():10-19. PubMed ID: 26048817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tandem ion trap/ion mobility spectrometer.
    Creaser CS; Benyezzar M; Griffiths JR; Stygall JW
    Anal Chem; 2000 Jul; 72(13):2724-9. PubMed ID: 10905299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing Ion Mobility-Mass Spectrometry to Investigate the Unfolding Pathway of Cu/Zn Superoxide Dismutase.
    Butler KE; Takinami Y; Rainczuk A; Baker ES; Roberts BR
    Front Chem; 2021; 9():614595. PubMed ID: 33634076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Hot Are Your Ions in Differential Mobility Spectrometry?
    Ieritano C; Featherstone J; Haack A; Guna M; Campbell JL; Hopkins WS
    J Am Soc Mass Spectrom; 2020 Mar; 31(3):582-593. PubMed ID: 31967812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sequence length and charged residues on Swc5 binding with histone H2A-H2B.
    Chu WT; Wang J
    Proteins; 2021 May; 89(5):512-520. PubMed ID: 33320380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.
    Placek BJ; Harrison LN; Villers BM; Gloss LM
    Protein Sci; 2005 Feb; 14(2):514-22. PubMed ID: 15632282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the behaviour of ions in the gas-phase to predict the ion mobility separation of isomeric steroid compounds.
    Hadavi D; Borzova M; Porta Siegel T; Honing M
    Anal Chim Acta; 2022 Apr; 1200():339617. PubMed ID: 35256146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous fragmentation of multiple ions using IMS drift time dependent collision energies.
    Baker ES; Tang K; Danielson WF; Prior DC; Smith RD
    J Am Soc Mass Spectrom; 2008 Mar; 19(3):411-9. PubMed ID: 18226544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.