These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37860755)
1. An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery. Lee KT; Lee DS; Chen WH; Lin YL; Luo D; Park YK; Bandala A iScience; 2023 Oct; 26(10):107874. PubMed ID: 37860755 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Thermoelectric Generators for Field Deployments. Kishore RA; Nozariasbmarz A; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298 [TBL] [Abstract][Full Text] [Related]
3. Experiments on Waste Heat Thermoelectric Generation for Passenger Vehicles. Chen J; Xie W; Dai M; Shen G; Li G; Tang Y Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056272 [TBL] [Abstract][Full Text] [Related]
4. Microturbine and Thermoelectric Generator Combined System: A Case Study. Miozzo A; Boldrini S; Ferrario A; Fabrizio M J Nanosci Nanotechnol; 2017 Mar; 17(3):1601-607. PubMed ID: 29693978 [TBL] [Abstract][Full Text] [Related]
5. Modeling assisted evaluation of direct electricity generation from waste heat of wastewater via a thermoelectric generator. Zou S; Kanimba E; Diller TE; Tian Z; He Z Sci Total Environ; 2018 Sep; 635():1215-1224. PubMed ID: 29710576 [TBL] [Abstract][Full Text] [Related]
6. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Morata A; Pacios M; Gadea G; Flox C; Cadavid D; Cabot A; Tarancón A Nat Commun; 2018 Nov; 9(1):4759. PubMed ID: 30420652 [TBL] [Abstract][Full Text] [Related]
7. Study of the performance of thermoelectric generator for waste heat recovery from chimney: impact of nanofluid-microchannel cooling system. Eldesoukey A; Hassan H Environ Sci Pollut Res Int; 2022 Oct; 29(49):74242-74263. PubMed ID: 35635664 [TBL] [Abstract][Full Text] [Related]
8. Development of a Small Thermoelectric Generators Prototype for Energy Harvesting from Low Temperature Waste Heat at Industrial Plant. Chiarotti U; Moroli V; Menchetti F; Piancaldini R; Bianco L; Viotto A; Baracchini G; Gaspardo D; Nazzi F; Curti M; Gabriele M J Nanosci Nanotechnol; 2017 Mar; 17(3):1586-591. PubMed ID: 29693960 [TBL] [Abstract][Full Text] [Related]
9. Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application. Nozariasbmarz A; Poudel B; Li W; Kang HB; Zhu H; Priya S iScience; 2020 Jul; 23(7):101340. PubMed ID: 32688286 [TBL] [Abstract][Full Text] [Related]
10. Realizing thermoelectric cooling and power generation in N-type PbS Wang L; Wen Y; Bai S; Chang C; Li Y; Liu S; Liu D; Wang S; Zhao Z; Zhan S; Cao Q; Gao X; Xie H; Zhao LD Nat Commun; 2024 May; 15(1):3782. PubMed ID: 38710678 [TBL] [Abstract][Full Text] [Related]
11. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
12. Multidisiplinary design optimization of a power generation system based on waste energy recovery from an internal combustion engine using organic Rankine cycle and thermoelectric generator. Chammam A; Tripathi AK; Aslla-Quispe AP; Huamán-Romaní YL; Abdullaev SS; Hussien NA; Alkhayyat A; Alsalamy AH; Pant R Chemosphere; 2023 Nov; 340():139876. PubMed ID: 37604339 [TBL] [Abstract][Full Text] [Related]
13. Research on the Performance of Thermoelectric Self-Powered Systems for Wireless Sensor Based on Industrial Waste Heat. Jiang Y; Wang Y; Yan J; Shen L; Qin J Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338728 [TBL] [Abstract][Full Text] [Related]
14. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486 [TBL] [Abstract][Full Text] [Related]
15. Near-Field Thermophotonic Systems for Low-Grade Waste-Heat Recovery. Zhao B; Santhanam P; Chen K; Buddhiraju S; Fan S Nano Lett; 2018 Aug; 18(8):5224-5230. PubMed ID: 30016115 [TBL] [Abstract][Full Text] [Related]
16. Earth-Abundant Fe-Al-Si Thermoelectric (FAST) Materials: from Fundamental Materials Research to Module Development. Takagiwa Y; Ikeda T; Kojima H ACS Appl Mater Interfaces; 2020 Oct; 12(43):48804-48810. PubMed ID: 33054167 [TBL] [Abstract][Full Text] [Related]
17. High-performance thermoelectrics and challenges for practical devices. Yan Q; Kanatzidis MG Nat Mater; 2022 May; 21(5):503-513. PubMed ID: 34675376 [TBL] [Abstract][Full Text] [Related]
18. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi Chung YC; Wu CI Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609 [TBL] [Abstract][Full Text] [Related]
19. Demonstration of a thermoelectric generator system for low-temperature heat harvesting in fuel cell. Zhang S; Luo L; Zhang X; Zhang H iScience; 2024 Jul; 27(7):110022. PubMed ID: 39040051 [TBL] [Abstract][Full Text] [Related]
20. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator. Chang H; Yu ZR J Nanosci Nanotechnol; 2012 Aug; 12(8):6811-6. PubMed ID: 22962827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]