These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37861096)

  • 1. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu
    Bi S; Zhang Y; Wang H; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Energy Aqueous All-Sulfur Battery.
    Wang H; Bi S; Zhang Y; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202317825. PubMed ID: 38238258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A four-electron Zn-I
    Zou Y; Liu T; Du Q; Li Y; Yi H; Zhou X; Li Z; Gao L; Zhang L; Liang X
    Nat Commun; 2021 Jan; 12(1):170. PubMed ID: 33419999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Energy Aqueous S-MnO
    Yang J; Bi S; Wang H; Zhang Y; Yan H; Niu Z
    Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202409071. PubMed ID: 39136345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Redox Kinetics and Duration of Aqueous I
    Li X; Li N; Huang Z; Chen Z; Liang G; Yang Q; Li M; Zhao Y; Ma L; Dong B; Huang Q; Fan J; Zhi C
    Adv Mater; 2021 Feb; 33(8):e2006897. PubMed ID: 33470477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-Assisted Aqueous Manganese-Ion Battery Chemistry.
    Bi S; Zhang Y; Deng S; Tie Z; Niu Z
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202200809. PubMed ID: 35192232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing High-Performance Quasi-Solid Zn/I
    Shang W; Zhu J; Liu Y; Kang L; Liu S; Huang B; Song J; Li X; Jiang F; Du W; Gao Y; Luo H
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24756-24764. PubMed ID: 34004110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidentate Coordination Structure Facilitates High-Voltage and High-Utilization Aqueous Zn-I
    Wang M; Meng Y; Sajid M; Xie Z; Tong P; Ma Z; Zhang K; Shen D; Luo R; Song L; Wu L; Zheng X; Li X; Chen W
    Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202404784. PubMed ID: 38868978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Conjugated Phthalocyanine Copper Metal-Organic Frameworks for Sodium-Iodine Batteries with Long-Time-Cycling Durability.
    Wang F; Liu Z; Yang C; Zhong H; Nam G; Zhang P; Dong R; Wu Y; Cho J; Zhang J; Feng X
    Adv Mater; 2020 Jan; 32(4):e1905361. PubMed ID: 31815328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.
    Zhao Y; Hong M; Bonnet Mercier N; Yu G; Choi HC; Byon HR
    Nano Lett; 2014 Feb; 14(2):1085-92. PubMed ID: 24475968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes.
    Li X; Wang S; Zhang D; Li P; Chen Z; Chen A; Huang Z; Liang G; Rogach AL; Zhi C
    Adv Mater; 2024 Jan; 36(4):e2304557. PubMed ID: 37587645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry.
    Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H
    Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward High-Energy-Density Aqueous Zinc-Iodine Batteries: Multielectron Pathways.
    Zhang SJ; Hao J; Wu H; Kao CC; Chen Q; Ye C; Qiao SZ
    ACS Nano; 2024 Oct; 18(42):28557-28574. PubMed ID: 39383309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Zn-I
    Niu S; Zhao B; Liu D
    ACS Appl Mater Interfaces; 2023 May; 15(21):25558-25566. PubMed ID: 37198728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling dual metal active sites and low-solvation architecture toward high-performance aqueous ammonium-ion batteries.
    Du L; Bi S; Yang M; Tie Z; Zhang M; Niu Z
    Proc Natl Acad Sci U S A; 2022 Dec; 119(50):e2214545119. PubMed ID: 36472961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I
    Du W; Song Z; Zheng X; Lv Y; Miao L; Gan L; Liu M
    ChemSusChem; 2024 Dec; 17(24):e202400886. PubMed ID: 38899510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional manipulation of iodine redox kinetics in aqueous Fe-I
    Zhang W; Wang M; Zhang H; Fu L; Zhang W; Yuan Y; Lu K
    Chem Sci; 2023 Nov; 14(44):12730-12738. PubMed ID: 38020388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries.
    Zhang SJ; Hao J; Li H; Zhang PF; Yin ZW; Li YY; Zhang B; Lin Z; Qiao SZ
    Adv Mater; 2022 Jun; 34(23):e2201716. PubMed ID: 35435291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastable Electrolytic Zn-I
    Wang Y; Jin X; Xiong J; Zhu Q; Li Q; Wang R; Li J; Fan Y; Zhao Y; Sun X
    Adv Mater; 2024 Jul; 36(30):e2404093. PubMed ID: 38717804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.