These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 37861173)

  • 1. CoraL: interpretable contrastive meta-learning for the prediction of cancer-associated ncRNA-encoded small peptides.
    Li Z; Jin J; He W; Long W; Yu H; Gao X; Nakai K; Zou Q; Wei L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37861173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPENCER: a comprehensive database for small peptides encoded by noncoding RNAs in cancer patients.
    Luo X; Huang Y; Li H; Luo Y; Zuo Z; Ren J; Xie Y
    Nucleic Acids Res; 2022 Jan; 50(D1):D1373-D1381. PubMed ID: 34570216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FuncPEP: A Database of Functional Peptides Encoded by Non-Coding RNAs.
    Dragomir MP; Manyam GC; Ott LF; Berland L; Knutsen E; Ivan C; Lipovich L; Broom BM; Calin GA
    Noncoding RNA; 2020 Sep; 6(4):. PubMed ID: 32977531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the secrets of non-coding RNA-encoded peptides in plants: A comprehensive review of mining methods and research progress.
    Wang Z; Cui Q; Su C; Zhao S; Wang R; Wang Z; Meng J; Luan Y
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124952. PubMed ID: 37257526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides.
    Li Z; Jin J; Wang Y; Long W; Ding Y; Hu H; Wei L
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36897030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Noncoding RNA-encoded Peptides.
    Pan J; Meng X; Jiang N; Jin X; Zhou C; Xu D; Gong Z
    Protein Pept Lett; 2018; 25(8):720-727. PubMed ID: 30091402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning.
    Wei J; Zhuo L; Zhou Z; Lian X; Fu X; Yao X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37427977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction.
    Zheng J; Qian Y; He J; Kang Z; Deng L
    J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization.
    Ai N; Liang Y; Yuan H; Ouyang D; Xie S; Liu X
    BMC Genomics; 2023 Jul; 24(1):424. PubMed ID: 37501127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs.
    Mohapatra S; Banerjee A; Rausseo P; Dragomir MP; Manyam GC; Broom BM; Calin GA
    Noncoding RNA; 2024 Apr; 10(2):. PubMed ID: 38668378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ncRNA-Encoded Peptides or Proteins and Cancer.
    Wang J; Zhu S; Meng N; He Y; Lu R; Yan GR
    Mol Ther; 2019 Oct; 27(10):1718-1725. PubMed ID: 31526596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.
    Tian Z; Yu Y; Fang H; Xie W; Guo M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.