These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 3786141)
1. In vitro transcription of a human hsp 70 heat shock gene by extracts prepared from heat-shocked and non-heat-shocked human cells. Drabent B; Genthe A; Benecke BJ Nucleic Acids Res; 1986 Nov; 14(22):8933-48. PubMed ID: 3786141 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning of sequences encoding the human heat-shock proteins and their expression during hyperthermia. Hickey E; Brandon SE; Sadis S; Smale G; Weber LA Gene; 1986; 43(1-2):147-54. PubMed ID: 3019832 [TBL] [Abstract][Full Text] [Related]
3. Use of polymerase chain reaction to detect the expression of the Mr 70,000 heat shock genes in control or heat shock leukemic cells as correlated to their heat response. Mivechi NF; Rossi JJ Cancer Res; 1990 May; 50(10):2877-84. PubMed ID: 2334891 [TBL] [Abstract][Full Text] [Related]
4. Identification of a nuclear protein that constitutively recognizes the sequence containing a heat-shock element. Its binding properties and possible function modulating heat-shock induction of the rat heme oxygenase gene. Okinaga S; Shibahara S Eur J Biochem; 1993 Feb; 212(1):167-75. PubMed ID: 8444154 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning of cDNA encoding a human heat-shock protein whose expression is induced by adenovirus type 12 E1A in HeLa cells. Yamazaki M; Tashiro H; Yokoyama K; Soeda E Agric Biol Chem; 1990 Dec; 54(12):3163-70. PubMed ID: 1368637 [TBL] [Abstract][Full Text] [Related]
6. Sequence, identification and characterization of cDNAs encoding two different members of the 18 kDa heat shock family of Zea mays L. Goping IS; Frappier JR; Walden DB; Atkinson BG Plant Mol Biol; 1991 Apr; 16(4):699-711. PubMed ID: 1714322 [TBL] [Abstract][Full Text] [Related]
7. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Sodhi M; Mukesh M; Kishore A; Mishra BP; Kataria RS; Joshi BK Gene; 2013 Sep; 527(2):606-15. PubMed ID: 23792016 [TBL] [Abstract][Full Text] [Related]
8. Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. Goldenberg CJ; Luo Y; Fenna M; Baler R; Weinmann R; Voellmy R J Biol Chem; 1988 Dec; 263(36):19734-9. PubMed ID: 3198647 [TBL] [Abstract][Full Text] [Related]
9. Heat shock factor is regulated differently in yeast and HeLa cells. Sorger PK; Lewis MJ; Pelham HR Nature; 1987 Sep 3-9; 329(6134):81-4. PubMed ID: 3306402 [TBL] [Abstract][Full Text] [Related]
10. Sequence and organization of genes encoding the human 27 kDa heat shock protein. Hickey E; Brandon SE; Potter R; Stein G; Stein J; Weber LA Nucleic Acids Res; 1986 May; 14(10):4127-45. PubMed ID: 3714473 [TBL] [Abstract][Full Text] [Related]
11. Identification, characterization, and analysis of cDNA and genomic sequences encoding two different small heat shock proteins in Hordeum vulgare. Marmiroli N; Pavesi A; Di Cola G; Hartings H; Raho G; Conte MR; Perrotta C Genome; 1993 Dec; 36(6):1111-8. PubMed ID: 8112573 [TBL] [Abstract][Full Text] [Related]
12. Common control of the heat shock gene and early adenovirus genes: evidence for a cellular E1A-like activity. Imperiale MJ; Kao HT; Feldman LT; Nevins JR; Strickland S Mol Cell Biol; 1984 May; 4(5):867-74. PubMed ID: 6547205 [TBL] [Abstract][Full Text] [Related]
13. Molecular events involved in transcriptional activation of heat shock genes become progressively refractory to heat stimulation during aging of human diploid fibroblasts. Liu AY; Choi HS; Lee YK; Chen KY J Cell Physiol; 1991 Dec; 149(3):560-6. PubMed ID: 1720788 [TBL] [Abstract][Full Text] [Related]
14. Developmental control of the heat shock response in Xenopus. Bienz M Proc Natl Acad Sci U S A; 1984 May; 81(10):3138-42. PubMed ID: 6203112 [TBL] [Abstract][Full Text] [Related]
15. The nuclear-coded chloroplast 22-kDa heat-shock protein of Chlamydomonas. Evidence for translocation into the organelle without a processing step. Grimm B; Ish-Shalom D; Even D; Glaczinski H; Ottersbach P; Ohad I; Kloppstech K Eur J Biochem; 1989 Jul; 182(3):539-46. PubMed ID: 2473899 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the major 68 kDa heat shock protein in a rat transformed astroglial cell line. Nishimura RN; Dwyer BE; de Vellis J; Clegg KB Brain Res Mol Brain Res; 1992 Jan; 12(1-3):203-8. PubMed ID: 1312202 [TBL] [Abstract][Full Text] [Related]
17. Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila. Ingolia TD; Slater MR; Craig EA Mol Cell Biol; 1982 Nov; 2(11):1388-98. PubMed ID: 6761581 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional and translational analysis of the murine 84- and 86-kDa heat shock proteins. Ullrich SJ; Moore SK; Appella E J Biol Chem; 1989 Apr; 264(12):6810-6. PubMed ID: 2708345 [TBL] [Abstract][Full Text] [Related]
19. Transcript length heterogeneity at the small heat shock protein genes of Drosophila. Berger EM; Vitek MP; Morganelli CM J Mol Biol; 1985 Nov; 186(1):137-48. PubMed ID: 2416939 [TBL] [Abstract][Full Text] [Related]
20. Induction of a chicken small heat shock (stress) protein: evidence of multilevel posttranscriptional regulation. Edington BV; Hightower LE Mol Cell Biol; 1990 Sep; 10(9):4886-98. PubMed ID: 2388629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]